Precision RENORM Tensor-Pomeron Cross Sections at LHC

Konstantin Goulianos¹,a)

¹The Rockefeller University, 1230 York Avenue, New York, NY 10065-6399, USA

Corresponding author: dino@rockefeller.edu
URL: http://physics.rockefeller.edu/dino/my.html

Abstract. Precision predictions of soft and hard diffraction, elastic scattering, and total proton-proton cross sections, based on a tensor-Pomeron implementation of the RENORM model, are compared to the latest experimental results at the LHC and cosmic-ray experiments, and extended to the planned SuperCollider energies.

INTRODUCTION

In DIS-2015 (Spring 2015) we summarized [1] the pre-LHC predictions of the total, elastic and total-inelastic, as well as the single- and double-diffractive components of the proton-proton cross section at high energies, based on the RENORM/MBR model [2]. We compared the measurements of the SD and DD cross sections from the Tevatron and the LHC with the predictions of the model and found excellent agreement. Good agreement was also observed between the model predictions and the total, elastic, and total inelastic cross sections obtained at the Tevatron at √s = 1.8 TeV, and at the LHC at √s = 7 and 8 TeV.

The success of the predictions of the RENORM/MBR model for all the above cross sections at the Tevatron and LHC up to √s = 8 TeV prompted an extrapolation to √s = 13 TeV, the nominal foreseen colliding-beam energy at the LHC for Summer 2015. For σtot, σel and σinel, we predicted 108 mb, 32 mb, and 77 mb, respectively, with uncertainties of ~ 11%, mainly due to the uncertainty in the energy-squared scale parameter s0 of the model.

In Summer 2015 we updated the value of s0 to a more precise one based on a tensor glueball interpretation of the Axial Field Spectrometer (AFS) exclusive charged di-pion data [3, 4, 5]. This change in RENORM/MBR decreases the uncertainties in the predictions of the total, elastic, and total-inelastic cross sections to less than 2% from Tevatron to LHC energies, with little or no effect on the mean values. The predictions were compared with measurements by ATLAS at √s = 7 TeV and by TOTEM at √s = 7 and 8 TeV at Moriond QCD in March 2016 [6] and found to be in good agreement.

This is an update of the Moriond-QCD paper [6] that includes presented verbatim certain sections and describes new measurements of the total inelastic cross section at √s = 13 TeV by ATLAS and CMS at DIS-2016 (April 2016) by Trzebinski (ATLAS) and Van Haevermaet [7] and in the summary talk by Sykora at ICHEP16 [8]. There are disagreements among the measurements themselves and the RENORM predictions at the ~ 2.5 sigma level. In the present paper, we discuss these findings in an attempt to understand the origin of the observed discrepancies.

RENORM CROSS SECTIONS

The total, elastic, and total-inelastic cross sections in the RENORM/MBR model depend on the value of the energy-squared scale parameter, s0. Quoting verbatim from Ref. [1],

The total cross section (σtot) is expressed as [9]

\[\sigma_{tot}^p = 16.79 s_0^{0.104} + 60.81 s_0^{-0.32} + 31.68 s_0^{-0.54} \quad \text{for } \sqrt{s} \leq 1.8 \text{ tev}, \] (1)

\[\sigma_{tot}^p = \sigma_{tot}^{\text{cdf}} + \pi s_0 \left(\ln \frac{s}{s_0} \right)^2 - \left(\ln \frac{s}{s_0} \right)^2 \quad \text{for } \sqrt{s} \geq 1.8 \text{ tev}, \] (2)
where s_0 and s_f are the energy and (Pomeron flux) saturation scales, $s_0 = 3.7 \pm 1.5 \text{ GeV}^2$ and $\sqrt{s_f} = 22 \text{ GeV}$, respectively. For $\sqrt{s} \leq 1.8 \text{ TeV}$, where there are Reggeon contributions, we use the global fit expression [10], while for $\sqrt{s} \geq 1.8 \text{ TeV}$, where Reggeon contributions are negligible, we employ the Froissart-Martin formula [11, 12, 13]. The two expressions are smoothly matched at $\sqrt{s} \approx 1.8 \text{ TeV}$. The σ_{el} for $\sqrt{s} \leq 1.8 \text{ TeV}$ is obtained from the global fit [10], while for $1.8 < \sqrt{s} \leq 50 \text{ TeV}$ we use an extrapolation of the global-fit ratio of $\sigma_{\text{el}}/\sigma_{\text{tot}}$, which is slowly varying with \sqrt{s}, multiplied by σ_{tot}. The total non-diffractive cross section is given by $\sigma_{\text{nd}} = (\sigma_{\text{tot}} - \sigma_{\text{el}}) - (2\sigma_{\text{sd}} + \sigma_{\text{dd}} + \sigma_{\text{cd}})$.

Tensor-Pomeron predictions

The partial wave analysis of the AFS exclusive $\pi^+\pi^-$ data [5], performed in terms of a fit with a model with S-wave and D-wave amplitudes as a function of the di-pion mass up to 2.3 GeV, leads to the results presented in Figure 1.

![Figure 1](image-url)

FIGURE 1. Extraction of tensor-Pomeron parameters from a Gaussian fit to the exclusive $\pi^+\pi^-$ Axial Field Spectrometer data: mean mass value $\langle m_{\pi^+\pi^-} \rangle = 2.10 \text{ GeV}$ and width $\delta = \pm 0.68 \text{ GeV}$.

The D-wave dominates at masses above $\sim 2 \text{ GeV}$, and according to the presumed interpretation in Ref. [5] it corresponds to a spin-2 tensor glueball of mass M_{tgb}. A Gaussian fit to this enhancement yields $M_{\text{tgb}} = 2.10 \pm 0.68 \text{ GeV}$. Identifying M_{tgb}^2 with the saturated glueball-like enhancement of the MBR-model parameter s_0 (see Equation 2) yields $s_0 = 4.42 \pm 0.34 \text{ GeV}^2$. Using this value in Equation 2, we predicted for σ_{tot}, σ_{el}, and σ_{inel} at 13 TeV cross sections of $103.7 \pm 1.9 \text{ mb}$, $30.2 \pm 0.8 \text{ mb}$, and $73.5 \pm 1.3 \text{ mb}$, respectively. The ATLAS- and TOTEM-measured cross sections at $\sqrt{s} = 7$ and 8 TeV [14]–2015, [15]–2013, and [16]–2013 are shown in Table 1 along with the MBR predictions. The measurements are in good agreement with the predictions. Also shown is a measurement of the total inelastic cross section by ATLAS at $\sqrt{s} = 13 \text{ TeV}$ [17] (Aspen Winter Conference 2016), $\sigma_{\text{inel}} = 73.1 \pm 0.9 \text{ (exp)} \pm 3.8 \text{ (extr)} \pm 6.6 \text{ (lumi)} \text{ mb}$, which, apart from the extrapolation and luminosity uncertainties, is in excellent agreement with MBR.
It should be emphasized that the tensor-Pomeron hypothesis predicts directly only the total cross section. As discussed above, the elastic cross section for $\sqrt{s} \leq 1.8$ TeV is obtained from the global fit [10], while for $1.8 < \sqrt{s} \leq 13$ TeV we use an extrapolation of the global-fit ratio of σ_{el}/σ_{tot}, which is slowly varying with \sqrt{s}, multiplied by σ_{tot}.

The total inelastic cross section is calculated as the difference between the total and the elastic cross sections. Thus, a measured lower σ_{el} would result in a higher σ_{inel}. Table 1 displays MBR-predicted versus measured cross sections. The MBR σ_{el} is larger than the TOTEM and CMS measurements by ~ 2.5 mb at both $\sqrt{s} = 7$ and 8 TeV, which would imply a higher MBR prediction for σ_{inel} at 13 TeV by ~ 2.5 mb as well. At Moriond 2016, we underscored that this interplay between σ_{el} and σ_{inel} should be carefully taken into consideration as further results with reduced luminosity and extrapolation uncertainties of both σ_{el} and σ_{tot} at $\sqrt{s} = 8$ TeV and $\sqrt{s} = 13$ TeV became available.

New results were presented at ICHEP16 by ATLAS (ALFA_fit) and CMS [8] (see reference “h” in Table 1). The new ATLAS σ_{inel} at $\sqrt{s} = 8$ TeV agrees with that of TOTEM, but the σ_{el} is ~ 2.5 mb lower. At $\sqrt{s} = 13$ TeV, ATLAS measures a σ_{inel} larger than the previous value by $\sim 6 \pm 3$ mb, while the CMS σ_{inel} is unchanged. The uncertainty in both experiments is dominated by the extrapolation to the unmeasured low-mass region.

Focusing on $\sqrt{s} = 13$ TeV, there is significant disagreement between the new ATLAS and CMS σ_{inel}. Lowering σ_{el}^{MBR} by 2.5 mb, which is within its systematic uncertainty, would increase σ_{inel}^{MBR} to 75.5 ± 1.3 mb, placing it comfortably between ATLAS and CMS as we await for the two experimental results to coalesce to the same value.

<table>
<thead>
<tr>
<th>\sqrt{s} (TeV)</th>
<th>Input source</th>
<th>Reference</th>
<th>σ_{tot} (mb)</th>
<th>σ_{el} (mb)</th>
<th>σ_{inel} (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>MBR</td>
<td>a</td>
<td>95.4 ± 1.2</td>
<td>26.4 ± 0.3</td>
<td>69.0 ± 1.0</td>
</tr>
<tr>
<td>ATLAS</td>
<td>b</td>
<td></td>
<td>95.35 ± 1.36</td>
<td>24.00 ± 0.60</td>
<td>71.34 ± 0.90</td>
</tr>
<tr>
<td>TOTEM</td>
<td>c</td>
<td></td>
<td>101.7 ± 1.36</td>
<td>27.1 ± 1.4</td>
<td>74.7 ± 1.7</td>
</tr>
<tr>
<td>TOTEM_Lum_ind</td>
<td>d</td>
<td></td>
<td>98.0 ± 2.5</td>
<td>24.00 ± 0.60</td>
<td>72.9 ± 1.5</td>
</tr>
<tr>
<td>8</td>
<td>MBR</td>
<td>a</td>
<td>97.1 ± 1.4</td>
<td>27.2 ± 0.4</td>
<td>69.9 ± 1.0</td>
</tr>
<tr>
<td>TOTEM</td>
<td>e</td>
<td></td>
<td>101.7 ± 2.9</td>
<td>27.1 ± 1.4</td>
<td>74.8 ± 1.7</td>
</tr>
<tr>
<td>ATLAS_ALFA_fit</td>
<td>(h) ICHEP16</td>
<td></td>
<td>96.1 ± 0.9</td>
<td>24.3 ± 0.4</td>
<td>xxx</td>
</tr>
<tr>
<td>13</td>
<td>MBR</td>
<td>a</td>
<td>103.7 ± 1.9</td>
<td>30.2 ± 0.8</td>
<td>73.5 ± 1.3</td>
</tr>
<tr>
<td>ATLAS</td>
<td>f & g</td>
<td></td>
<td>xxx</td>
<td>xxx</td>
<td>73.1 ± 0.9(exp)+3.8(extr)+6.6(lumi)</td>
</tr>
<tr>
<td>ATLAS_ALFA_fit</td>
<td>(h) ICHEP16</td>
<td></td>
<td>xxx</td>
<td>xxx</td>
<td>79.3 ± 0.6(exp)+2.5(extr)+1.3(lumi)</td>
</tr>
<tr>
<td>CMS</td>
<td>(h) ICHEP16</td>
<td></td>
<td>xxx</td>
<td>xxx</td>
<td>71.3 ± 0.6(exp)+2.7(extr)+0.1(lumi)</td>
</tr>
</tbody>
</table>

*Reference:
(a) http://arxiv.org/abs/1205.1446
(b) http://arxiv.org/abs/1408.5778
(c) http://arxiv.org/abs/1204.5689
(d) http://iopscience.iop.org/article/10.1209/0295-5075/101/21004
(e) http://dx.doi.org/10.1103/PhysRevLett.111.012001
(f) M. Trzebinski (ATLAS), DIS-2016 [7]-a
(g) H. Van Haevermaet (CMS), DIS-2016 [7]-b
(h) T. Sykora, Cross sections summary, ICHEP16 [8]

SUMMARY AND CONCLUSIONS

We present the predictions of the total, elastic scattering, and total-inelastic proton-proton cross sections at $\sqrt{s} = 7$, 8, and 13 TeV of the MBR model, based on a Regge-theory inspired tensor-Pomeron implementation of the RENORM model for hadronic diffraction, and compare them with experimental results by the TOTEM, ATLAS, and CMS Collaborations. All measured cross sections are in good agreement within the experimental uncertainties of the data and the theoretical uncertainties of the model, reaching down to the ~1% level.
However, we emphasize that the tensor-Pomeron prediction applies only to the total cross section, while the predicted σ_{el} is calculated by an extrapolation of the global-fit ratio of σ_{el}/σ_{tot} multiplied by the tensor-Pomeron σ_{tot}, and therefore carries the larger uncertainties of this ratio. Future measurements of both σ_{el} and σ_{tot} at $\sqrt{s} = 8$ TeV and $\sqrt{s} = 13$ TeV with reduced luminosity and extrapolation uncertainties are needed to clarify the experimental status.

ACKNOWLEDGMENTS

Warmly acknowledged are Dr. Michael Albrow for providing a copy of the thesis of Peter C. Cesil, where the tensor-Pomeron data and analysis are discussed, and Dr. Robert Ciesielski for extracting the tensor-Pomeron parameters from the data and for many invaluable discussions.

REFERENCES

[4] M. G. Albrow, Axial Field Spectrometer results on exclusive $\pi^+\pi^-$ production (private communication).

(a) Maciej Trzebinzki (ATLAS Collaboration), Measurements of Total, Elastic, Inelastic and Diffractive Cross Sections with the ATLAS Detector;
(b) Hans Van Haevermaet (CMS Collaboration), Measurement of the inelastic cross section at 13 TeV.

