Diffraction, saturation and pp cross sections at the LHC

Moriond QCD and High Energy Interactions
La Thuile, March 20-27, 2011

Konstantin Goulianos
The Rockefeller University
(member of CDF and CMS)
CONTENTS

- Introduction
- Diffractive cross sections
- The total, elastic, and inelastic cross sections
- Monte Carlo strategy for the LHC
- Conclusions
Why study diffraction?

Two reasons: one fundamental / one practical.

- **fundamental**

 - measure σ_T & ρ-value at LHC:
 - check for violation of dispersion relations
 - → sign for new physics
 - Bourrely, C., Khuri, N.N., Martin, A., Soffer, J., Wu, T.T
 - http://en.scientificcommons.org/16731756

- **practical**: underlying event (UE), triggers, calibrations

 → the UE affects all physics studies at the LHC

NEED ROBUST MC SIMULATION OF SOFT PHYSICS
MC simulations:
Pandora’s box was unlocked at the LHC!

- Presently available MCs based on pre-LHC data were found to be inadequate for LHC
- MC tunes: the “evils of the world” were released from Pandora’s box at the LHC

... but fortunately, hope remained in the box
→ a good starting point for this talk

Pandora's box is an artifact in Greek mythology, taken from the myth of Pandora's creation around line 60 of Hesiod's *Works And Days*. The "box" was actually a large jar (πιθος *pithos*) given to Pandora (Πανδώρα) ("all-gifted"), which contained all the evils of the world. When Pandora opened the jar, the entire contents of the jar were released, but for one – hope.

Nikipedia
Diffractive gaps

definition: gaps not exponentially suppressed

\[\xi \approx \frac{M_x^2}{s} \]

\[\frac{d\sigma}{d\Delta\eta} \approx \text{constant} \Rightarrow \frac{d\sigma}{dM^2} \sim \frac{1}{M^2} \Rightarrow \frac{d\sigma}{d\xi} \sim \frac{1}{\xi} \]
Diffractive p\bar p-p studies @ CDF

Elastic scattering

$\sigma_T = \text{Im } f_{el} (t=0)$

Total cross section

ϕ GAP η

OPTICAL THEOREM

ϕ η

SD

DD

DPE

SDD = SD + DD

Diffraction, saturation, and pp cross sections at the LHC

K. Goulianos
Basic and combined diffractive processes

<table>
<thead>
<tr>
<th>acronym</th>
<th>basic diffractive processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{SD}_{\bar{p}}$</td>
<td>$\bar{p}p \rightarrow \bar{p} + \text{gap} + [p \rightarrow X_p]$,</td>
</tr>
<tr>
<td>SD_p</td>
<td>$p\bar{p} \rightarrow [\bar{p} \rightarrow X_{\bar{p}}] + \text{gap} + p$,</td>
</tr>
<tr>
<td>DD</td>
<td>$p\bar{p} \rightarrow [\bar{p} \rightarrow X_{\bar{p}}] + \text{gap} + [p \rightarrow X_p]$,</td>
</tr>
<tr>
<td>DPE</td>
<td>$\bar{p}p \rightarrow \bar{p} + \text{gap} + X_c + \text{gap} + p$,</td>
</tr>
<tr>
<td></td>
<td>2-gap combinations of SD and DD</td>
</tr>
<tr>
<td>$\text{SDD}_{\bar{p}}$</td>
<td>$p\bar{p} \rightarrow \bar{p} + \text{gap} + X_c + \text{gap} + [p \rightarrow X_p]$,</td>
</tr>
<tr>
<td>SDD_p</td>
<td>$p\bar{p} \rightarrow [\bar{p} \rightarrow X_{\bar{p}}]\text{gap} + X_c + \text{gap} + p$.</td>
</tr>
</tbody>
</table>

a 4-gap diffractive process

\[
\begin{align*}
\Delta\eta_1 & \quad \Delta\eta'_1 & \quad \Delta\eta_2 & \quad \Delta\eta'_2 & \quad \Delta\eta_3 & \quad \Delta\eta'_3 & \quad \Delta\eta_4 \\
\end{align*}
\]

\[
\begin{align*}
\eta'_1 & \quad \eta_2 & \quad \eta'_2 & \quad \eta_3 & \quad \eta'_3 \\
t_1 & \quad t_2 & \quad t_3 & \quad t_4 \\
\end{align*}
\]
Regge theory – values of s_0 & g?

\[
\sigma_T = \beta_1(0) \beta_2(0) \left(\frac{S}{s_0} \right)^{\alpha(0)-1} = \sigma_0^{p\bar{p}} \left(\frac{S}{s_0} \right)^{\epsilon} \\
\frac{d\sigma_{el}}{dt} = \frac{\beta_1^2(t) \beta_2^2(t)}{16\pi} \left(\frac{S}{s_0} \right)^{2(\alpha(t)-1)} = \frac{\sigma_T^2}{16\pi} \frac{s}{s_0} F^4(t) \approx \frac{\sigma_T^2}{16\pi} e^{b_{el}(s) t} \\
F^4(t) \approx e^{b_{0,el} t} \Rightarrow b_{el}(s) = b_{0,el} + 2 \alpha' \ln \left(\frac{s}{s_0} \right)
\]

Parameters:
- s_0, s_0', and $g(t)$
- set $s_0' = s_0$ (universal IP)
- determine s_0 and g_{PPP} – how?

\[
\frac{d^2\sigma_{sd}}{dt d\xi} = \frac{\beta_1^2(t)}{16\pi} \xi^{1-2\alpha(t)} \left[\beta_2(0) g(t) \left(\frac{s'}{s_0'} \right)^{\alpha(0)-1} \right]
\]

\[
= f_{P/p}(\xi, t) \sigma_T^{p\bar{p}}(s', t)
\]
A complication … \(\Rightarrow\) Unitarity!

\[
\left(\frac{d\sigma_{el}}{dt} \right)_{t=0} \sim \left(\frac{s}{s_0} \right)^{2\epsilon}, \quad \sigma_t \sim \left(\frac{s}{s_0} \right)\epsilon, \quad \sigma_{sd} \sim \left(\frac{s}{s_0} \right)^{2\epsilon}
\]

\(d\sigma/dt\) \(\sigma_{sd}\) grows faster than \(\sigma_t\) as \(s\) increases
\(\Rightarrow\) unitarity violation at high \(s\)
(similarly for partial x-sections in impact parameter space)

\(\Rightarrow\) the unitarity limit is already reached at \(\sqrt{s} \sim 2\) TeV
\(\sigma_{SD}^{T} \text{ vs } \sigma_{T} \text{ (pp & \bar{pp})} \)

\(\Rightarrow \) suppressed relative to Regge for \(\sqrt{s} > 22 \text{ GeV} \)

\(\sigma_{T} \) and \(\sigma_{SD}^{T} \) vs \(\sqrt{s} \) (GeV)

- \(\xi < 0.05 \)
- Albrow et al.
- Armitage et al.
- UA4
- CDF
- E710
- Cool et al.

Standard flux

Renormalized flux

Factor of \(\sim 8 \text{ (~5) suppression at } \sqrt{s} = 1800 \text{ (540) GeV} \)

RENORMALIZATION MODEL

KG, PLB 358, 379 (1995)

CDF Run I results

\(\sqrt{s} = 22 \text{ GeV} \)

\(540 \text{ GeV} \)

\(1800 \text{ GeV} \)
Single diffraction renormalized – (1)

\[\kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-p}(0)} \approx 0.17 \]

\[\frac{d^2 \sigma}{dt \, d\Delta y} = C \cdot F_p^2(t) \cdot \left\{ e^{(\varepsilon+\alpha' t)\Delta y} \right\}^2 \cdot \kappa \cdot \left\{ \sigma_o \cdot e^{\varepsilon\Delta y'} \right\} \]

2 independent variables: \(t, \Delta y \)

Gap probability \(\Rightarrow \) (re)normalize to unity

KG \(\Rightarrow \) CORFU-2001: hep-ph/0203141

Single diffraction renormalized – (2)

\[\kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-p}(0)} \approx 0.17 \]

Experimentally:

\[\kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \]

QCD:

\[\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \]

\[\frac{Q^2}{1} = 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} = 0.18\]
Single diffraction renormalized - (3)

\[
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_\circ}{16\pi} \sigma_{IPp}^{\circ} \right] \frac{s^{2\epsilon}}{N(s, s_0)} \frac{e^{bt}}{(M^2)^{1+\epsilon}}
\]

\[
b = b_0 + 2\alpha' \ln \frac{s}{M^2} \quad s_0^{\text{CMG}} = (3.7 \pm 1.5) \text{ GeV}^2
\]

\[
N(s, s_0) \equiv \int_{\xi_{\text{min}}}^{\xi_{\text{max}}} \int_{t=0}^{-\infty} d\xi \int_{0}^{\infty} dt f_{IP/p}(\xi, t) s \to \infty \sim s_0^\epsilon s^{2\epsilon} \frac{e^{bt}}{\ln s}
\]

\[
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} \xrightarrow{s \to \infty} \sim \ln s \frac{e^{bt}}{(M^2)^{1+\epsilon}}
\]

\[
\sigma_{sd} \xrightarrow{s \to \infty} \sim \frac{\ln s}{b \to \ln s} \Rightarrow \text{const}
\]
Single diffraction renormalized – (4)

\[\frac{d^2 \sigma}{dt \, d\Delta y} = N_{\text{gap}} \cdot C \cdot F_p^2(t) \cdot \left\{ e^{(\varepsilon + \alpha' \tau) \Delta y} \right\}^2 \cdot \kappa \cdot \left\{ \sigma_0 \, e^{\varepsilon \Delta y'} \right\} \]

\[N_{\text{gap}}^{-1}(s) = \int_{\Delta y, t} \text{P}_{\text{gap}}(\Delta y, t) \, d\Delta y \, dt \xrightarrow{s \to \infty} C' \cdot \frac{s^{2 \varepsilon}}{\ln s} \]

\[\frac{d^2 \sigma}{dt \, d\Delta y} = C'' \left[e^{\varepsilon(\Delta y - \ln s)} \cdot \ln s \right] e^{(b_0 + 2\alpha' \Delta y) t} \]

- grows slower than \(s^\varepsilon \)

→ Pumplin bound obeyed at all impact parameters
M^2 distribution: data

\[\frac{d\sigma}{dM^2} \propto \frac{S^{2\varepsilon}}{(M^2)^{1+\varepsilon}} \rightarrow 1 \]

Independent of S over 6 orders of magnitude in M^2

\[\rightarrow M^2 \text{ scaling} \]

Regge data

\[\Delta \equiv \varepsilon \]

\[\Delta = 0.05 \]

\[\Delta = 0.15 \]

\[s \sim \text{ independent of } s \text{ over 6 orders of magnitude!} \]

\[\implies \text{ factorization breaks down to ensure } M^2 \text{ scaling} \]
Scale s_0 and triple-pom coupling

Pomeron flux: interpret as gap probability
\rightarrow set to unity: determines g_{PPP} and s_0

$$
\frac{d^2\sigma}{dt d\xi} = f_{IP/p}(t, \xi) \cdot \sigma_{IP-p}(s\xi)
$$

Pomeron-proton x-section

- Two free parameters: s_0 and g_{PPP}
- Obtain product $g_{PPP} \cdot s_0^{\varepsilon/2}$ from σ_{SD}
- Renormalized Pomeron flux determines s_0
- Get unique solution for g_{PPP}

$$
g_{PPP} = 0.69 \text{ mb}^{-1/2} = 1.1 \text{ GeV}^{-1} \\
s_0 = 3.7 \pm 1.5 \text{ GeV}^2
$$

KG, PLB 358 (1995) 379
Saturation “glueball” at ISR?

Giant glueball with \(f_0(980) \) and \(f_0(1500) \) superimposed, interfering destructively and manifesting as dips (???)

Figure 8: \(M_{\pi^+\pi^-} \) spectrum in DIPE at the ISR (Axial Field Spectrometer, R807 [97, 98]). Figure from Ref. [98]. See M.G.Albrow, T.D. Goughlin, J.R. Forshaw, hep-ph>arXiv:1006.1289
Multigap cross sections, e.g. SDD

\[\frac{d^5 \sigma}{\prod dV_i} = C \times F_p^2 (t_1) \prod_{i=1-2} \left\{ e^{(\varepsilon + \alpha' t_i) \Delta y_i} \right\}^2 \times \kappa^2 \left\{ \sigma_o e^{\varepsilon (\Delta y'_1 + \Delta y'_2)} \right\} \]

5 independent variables

\[\Delta y_1 \quad \Delta y'_1 \quad \Delta y_2 \quad \Delta y'_2 \]

\[t_1 \quad \Delta y = \Delta y_1 + \Delta y_2 \quad t_2 \]

Gap probability

\[\int_{\Delta y, t} \sim s^{2\varepsilon} / \ln s \]

Sub-energy cross section (for regions with particles)

Same suppression as for single gap!

KG, hep-ph/0203141

Moriond QCD 2011

Diffraction, saturation, and pp cross sections at the LHC

K. Goulianos
SDD in CDF: data vs NBR MC

http://physics.rockefeller.edu/publications.html

- Excellent agreement between data and NBR (MinBiasRockefeller) MC

\[
\frac{d^5\sigma}{dt_{\bar{p}}dt_{t}d\xi_{\bar{p}}d\Delta\eta_{0}d\eta_{c}} = \left[\beta(t) \frac{\beta(0)}{4\sqrt{\pi}} e^{[\alpha(t)-1] \ln(1/\xi)} \right]^2 \times \kappa \left[\frac{\beta(0)}{4\sqrt{\pi}} e^{[\alpha(t)-1] \Delta\eta} \right]^2 \kappa \left[\beta^2(0) \left(\frac{s_{II}}{s_{o}} \right)^{\epsilon} \right]
\]

Moriond QCD 2011 Diffraction, saturation, and pp cross sections at the LHC K. Goulianos 19
Multigaps: a 4-gap x-section

Presented at DIS-2005, XIIIth International Workshop on Deep Inelastic Scattering,
April 27 - May 1 2005, Madison, WI, U.S.A.

\textbf{Multigap Diffraction at LHC}

\[\Delta \eta_1 \quad \Delta \eta'_1 \quad \Delta \eta_2 \quad \Delta \eta'_2 \quad \Delta \eta_3 \quad \Delta \eta'_3 \quad \Delta \eta_4 \]

\begin{align*}
\Delta \eta_i & = \Delta \eta'_i \\
t_1 & = \eta'_1 \\
t_2 & = \eta_2 \\
t_3 & = \eta'_3 \\
t_4 & = \eta_3
\end{align*}

10 independent variables \(t_i, \eta_i, \eta'_i, \) and \(\Delta \eta \equiv \sum_{i=1}^{4} \Delta \eta_i \)

\[\frac{d^{10} \sigma^D}{\prod_{i=1}^{10} dV_i} = N_{gap}^{-1} F_p^2(t_1) F_p^2(t_4) \prod_{i=1}^{4} \left\{ e^{[\epsilon + \alpha' t_i] \Delta \eta_i} \right\}^2 \times \kappa^4 \left[\sigma_0 e^\epsilon \sum_{i=1}^{3} \Delta \eta'_i \right] \]

\text{gap probability}
• Use the Froissart formula as a saturated cross section

\[\sigma_t(s > s_F) = \sigma_t(s_F) + \frac{\pi}{m^2} \cdot \ln^2 \frac{s}{s_F} \]

• This formula should be valid above the knee in \(\sigma_{sd} \) vs. \(\sqrt{s} \) at \(\sqrt{s_F} = 22 \text{ GeV} \) (Fig. 1) and therefore valid at \(\sqrt{s} = 1800 \text{ GeV} \).

• Use \(m^2 = s_o \) in the Froissart formula multiplied by \(1/0.389 \) to convert it to \(\text{mb}^{-1} \).

• Note that contributions from Reggeon exchanges at \(\sqrt{s} = 1800 \text{ GeV} \) are negligible, as can be verified from the global fit of Ref. [7].

• Obtain the total cross section at the LHC:

\[\sigma_t^{\text{LHC}} = \sigma_t^{\text{CDF}} + \frac{\pi}{s_o} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right) \]

\[\sqrt{s_F} = 22 \text{ GeV} \]

SUPERBALL MODEL

98 ± 8 mb at 7 TeV
109 ±12 mb at 14 TeV
Total inelastic cross section

ATLAS measurement of the total inelastic x-section

Renormalization model

<table>
<thead>
<tr>
<th>√s [TeV]</th>
<th>σ_t</th>
<th>σ_{el}</th>
<th>σ_{inel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>98 ± 8</td>
<td>27 ± 2</td>
<td>71 ± 6</td>
</tr>
<tr>
<td>8</td>
<td>100 ± 8</td>
<td>28 ± 2</td>
<td>72 ± 6</td>
</tr>
<tr>
<td>14</td>
<td>109 ± 12</td>
<td>32 ± 4</td>
<td>76 ± 8</td>
</tr>
</tbody>
</table>

The σ_{el} is obtained from σ_t and the ratio of el/tot

σ^{SD} and ratio of \(\alpha'/\varepsilon \)

PHYSICAL REVIEW D 80, 111901(R) (2009)

Pomeron intercept and slope: A QCD connection

Konstantin Goulianos

\[
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_\circ}{16 \pi} \sigma^{pp}_\circ \right] \frac{s^{2\varepsilon}}{N(s)} \frac{1}{(M^2)^{1+\varepsilon}} e^{bt}
\]

\[
\Rightarrow \left[2\alpha' e^{(\epsilon b_0)/\alpha'} \sigma^{pp}_\circ \right] \frac{\ln s^{2\varepsilon}}{(M^2)^{1+\varepsilon}} e^{bt}
\]

\[
\sigma_{pp/\bar{p}p}^{tot} = \sigma_\circ \cdot e^{\varepsilon \Delta \eta}.
\]

\[
\sigma_{sd}^\infty = 2\sigma_\circ^{pp} \exp \left[\frac{\epsilon b_\circ}{2\alpha'} \right] = \sigma_\circ^{pp}
\]

\[
\sigma_\circ^{pp} = \beta^{pp}(0) \cdot g(t) = \kappa \sigma_\circ^{pp}
\]

\[
\kappa = \frac{f_g^{\infty}}{N_c^2 - 1} + \frac{f_q^{\infty}}{N_c}
\]

\[b_\circ = R_p^2/2 = 1/(2m_\pi^2).
\]

\[
r = \frac{\alpha'}{\varepsilon} = -\left[16m_\pi^2 \ln(2\kappa) \right]^{-1}
\]

\[
r_{pheno} = 3.2 \pm 0.4 \text{ (GeV/c)}^{-2}
\]

\[
r_{exp} = 0.25 \text{ (GeV/c)}^{-2}/0.08 = 3.13 \text{ (GeV/c)}^{-2}
\]
\(\sigma^{AB}(s) = X^{AB} s^\epsilon + Y^{AB} s^{-\eta} \quad \epsilon = 0.0808 \)

\[
\sigma_{\text{tot}}^{AB}(s) = \sigma_{\text{el}}^{AB}(s) + \sigma_{\text{sd}(XB)}^{AB}(s) + \sigma_{\text{sd}(AX)}^{AB}(s) + \sigma_{\text{dd}}^{AB}(s) + \sigma_{\text{nd}}^{AB}(s)
\]

\[
\frac{d\sigma_{\text{sd}(XB)}^{AB}(s)}{dt \, dM^2} = \frac{g_{3\text{IP}}}{16\pi} \beta_{A\text{IP}} \beta_{B\text{IP}}^2 \frac{1}{M^2} \exp(B_{s\text{d}(XB)t}) F_{s\text{d}}
\]

\[
\frac{d\sigma_{\text{sd}(AX)}^{AB}(s)}{dt \, dM^2} = \frac{g_{3\text{IP}}}{16\pi} \beta_{A\text{IP}}^2 \beta_{B\text{IP}} \frac{1}{M^2} \exp(B_{s\text{d}(AX)t}) F_{s\text{d}}
\]

\[
\frac{d\sigma_{\text{dd}}(s)}{dt \, dM^1_2 \, dM^2_2} = \frac{g_{3\text{IP}}^2}{16\pi} \beta_{A\text{IP}} \beta_{B\text{IP}} \frac{1}{M^1_2} \frac{1}{M^2_2} \exp(B_{dd}t) F_{dd}
\]

some comments:
- \(1/M^2 \) dependence instead of \((1/M^2)^{1+\epsilon}\)
- F-factors put “by hand” – next slide
- \(B_{dd} \) contains a term added by hand - next slide
Diffraction in PYTHIA -2

\[B_{sd(XB)}(s) = 2b_B + 2\alpha' \ln \left(\frac{s}{M^2} \right), \]
\[B_{sd(AX)}(s) = 2b_A + 2\alpha' \ln \left(\frac{s}{M^2} \right), \]
\[B_{dd}(s) = 2\alpha' \ln \left(e^4 + \frac{ss_0}{M_1^2 M_2^2} \right) \]

note:
- $1/M^2$ dependence
- e^4 factor

Fudge factors:
- suppression at kinematic limit
- kill overlapping diffractive systems in dd
- enhance low mass region

\[F_{sd} = \left(1 - \frac{M^2}{s} \right) \left(1 + \frac{c_{res} M_{res}^2}{M_{res}^2 + M^2} \right), \]
\[F_{dd} = \left(1 - \frac{(M_1 + M_2)^2}{s} \right) \left(\frac{s m_p^2}{s m_p^2 + M_1^2 M_2^2} \right) \times \left(1 + \frac{c_{res} M_{res}^2}{M_{res}^2 + M_1^2} \right) \left(1 + \frac{c_{res} M_{res}^2}{M_{res}^2 + M_2^2} \right) \]
CMS: observation of Diffraction at 7 TeV

An example of a beautiful data analysis and of MC inadequacies

CMS Preliminary 2010

13: CMS inclusive single diffraction observation: data vs. MC.

• No single MC describes the data in their entirety
Monte Carlo Strategy for the LHC

MONTE CARLO STRATEGY

- $\sigma^T \to$ from SUPERBALL model
- optical theorem \to $\text{Im } f_{el}(t=0)$
- dispersion relations \to $\text{Re } f_{el}(t=0)$
- σ_{el}
- σ_{inel}
- differential $\sigma^{SD} \to$ from RENORM
- use *nesting* of final states (FSs) for pp collisions at the $IP-p$ sub-energy $\sqrt{s'}$

“A new statistical description of hardonic and e^+e^- multiplicity distributions“
Monte Carlo algorithm - nesting

Profile of a pp inelastic collision

- no gap
- gap
- gap

$\Delta y' < \Delta y'_{\text{min}}$

$\Delta y' > \Delta y'_{\text{min}}$

generate central gap

repeat until $\Delta y' < \Delta y'_{\text{min}}$

$\ln s'$

η'_c

$\Delta y'_{\text{min}}$

final state from MC w/no-gaps

evolve every cluster similarly

EXIT

t
SUMMARY

- Introduction
- Diffractive cross sections
 - basic: SD_p, $SD_\bar{p}$, DD, DPE
 - combined: multigap x-sections
 - ND → no-gaps: final state from MC with no gaps
 - this is the only final state to be tuned
- The total, elastic, and inelastic cross sections
- Monte Carlo strategy for the LHC – use “nesting”
BACKUP
RISING X-SECTION IN PARTON MODEL

\[\sigma_T(s) = \sigma_o e^{\epsilon \Delta y'} = \sigma_o s^\epsilon \]

Emission spacing controlled by \(\alpha \)-strong

\(\Rightarrow \sigma_T \): power law rise with energy

(see E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

\(\alpha' \) reflects the size of the emitted cluster,

which is controlled by \(1/\alpha_s \) and thereby is related to \(\epsilon \)

\[\text{Forward elastic scattering amplitude} \]

\[\text{assume linear } t \text{-dependence} \]

\[\text{Im } f_{el}(s, t) \propto e^{(\epsilon + \alpha' t) \Delta y} \]
Gap survival probability

\[S = \frac{S_{1 \text{-gap}/0 \text{-gap}} (1800 \text{ GeV}) \approx 0.23}{S_{2 \text{-gap}/1 \text{-gap}} (630 \text{ GeV}) \approx 0.29} \]
Diffraction in MBR: dd in CDF

\[\frac{d^3 \sigma_{\text{DD}}}{d \eta d M_1^2 d M_2^2} = \left[\frac{k \beta_1^2(0)}{16 \pi} e^{2(\alpha_i - 1) \Delta \eta} \right] \left[\kappa \beta_2^2(0) \left(\frac{s'}{s_0} \right)^\epsilon \right] \]

\[\frac{d^2 \sigma_{\text{SD}}}{d \eta d M_1^2} \]

\[\frac{d^2 \sigma_{\text{SD}}}{d \eta d M_2^2} \]

\[\frac{d \sigma_{\text{el}}}{d \tau} \]

\[s^{2\epsilon} e^{b \Delta \eta} \]

\[(M_1^2 M_2^2)^{1+2\epsilon} \]

\[\ln M_1^2 \]

\[\ln M_2^2 \]

\[\ln s \]

\[\eta_{\text{min}} \]

\[\eta_{\text{max}} \]

\[\eta \]

\[\sqrt{s} = 1800 \text{ GeV} \]

- DATA
- DD + non-DD MC
- non-DD MC

\[\Delta \eta = \eta_{\text{max}} - \eta_{\text{min}} \]

\[\text{events} \]

\[\text{mb} \text{ (mb) for } \Delta \eta > 3.0 \]

\[\sqrt{s} (\text{GeV}) \]

\[\text{CDF} \]

\[\text{UA5 (adjusted)} \]

\[\text{Regge} \]

\[\text{Renormalized gap} \]

\[\text{renormalized} \]

Moriond QCD 2011 Diffraction, saturation, and pp cross sections at the LHC K. Goulianos 33
Diffraction in MBR: DPE in CDF

http://physics.rockefeller.edu/publications.html

- Excellent agreement between data and MBR
 ➔ low and high masses are correctly implemented
Dijets in γp at HERA from RENORM

K. Goulianos, POS (DIFF2006) 055 (p. 8)

Factor of ~ 3 suppression expected at $W \sim 200$ GeV (just as in pp collisions) for both direct and resolved components.
Saturation at low Q^2 and small-x

figure from a talk by Edmond Iancu
The end