Diffractive cross sections implemented in
PYTHIA8-MBR vs LHC results

Konstantin Goulianos†
The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA

September 19, 2013

Abstract
We review the predictions of diffractive cross sections implemented in the
PYTHIA8-MBR Monte Carlo simulation and compare them to recent
LHC results.

PACS number(s): 12.40.Nn, 12.39.St, 13.85.Lg, 13.85.Fb

1 Introduction
Measurements at the LHC have shown that there are sizable disagreements
among Monte Carlo (MC) implementations of “soft” processes based on cross
sections proposed by various physics models, and that it is not possible to re-
liably predict all such processes, or even all aspects of a given process, using a
single model [1, 2, 3] 1. In the CDF studies of diffraction at the Tevatron, all
processes are well modeled by the MBR (Minimum Bias Rockefeller) MC sim-
ulation, which is a stand-alone simulation based on a unitarized Regge-theory
model, RENORM [4], employing inclusive nucleon parton distribution functions
(PDF’s) and QCD color factors. The RENORM model was updated in a presenta-
tion at EDS-2009 [5] to include a unique unitarization prescription for predicting
the total pp cross section at high energies, and that update has been included
as an MBR option for simulating diffractive processes in PYTHIA8 since version
PYTHIA8.165 [6], to be referred here-forth as PYTHIA8-MBR. In this paper, we
briefly review the cross sections [7] implemented in this option of PYTHIA8 and
compare them with LHC measurements.

†Presented at the Low x workshop, May 30 - June 4 2013, Rehovot and Eilat, Israel
†dino@rockefeller.edu
1This paper is an essentially identical update of [3], which in itself is a more substantial
update of [1].
The PYTHIA8-MBR option includes a full simulation of the hadronization of the implemented diffraction dissociation processes: single, double, and central diffraction. In the original MBR simulation used in CDF, the hadronization of the final state(s) was based on a data-driven phenomenological model of multiplicities and p_t distributions calibrated using $\bar{p}pS$ and Fermilab fixed-target results. Later, the model was successfully tested against Tevatron MB and diffraction data. However, only π^\pm and π^0 particles were produced in the final state, with multiplicities obeying a statistical model of a modified Gamma distribution function that provided good fits to experimental data [8]. This model could not be used to predict specific-particle final states. In the PYTHIA8-MBR implementation, hadronization is performed by PYTHIA8 tuned to reproduce final-state distributions in agreement with MBR’s, with hadronization done in the PYTHIA8 framework. Thus, all final-state particles are now automatically produced, greatly enhancing the horizon of applicability of PYTHIA8-MBR.

2 Cross sections

The following diffraction dissociation processes are considered in PYTHIA8-MBR:

\[\text{SD} \quad pp \rightarrow Xp \quad \text{Single Diffraction (or Single Dissociation)}, \quad (1) \]
\[\text{or} \quad pp \rightarrow pY \quad \text{(the other proton survives)} \]
\[\text{DD} \quad pp \rightarrow XY \quad \text{Double Diffraction (or Double Dissociation)}, \quad (2) \]
\[\text{CD (or dpe)} \quad pp \rightarrow pXp \quad \text{Central Diffraction (or Double Pomeron Exchange).} \]

The RENORM predictions are expressed as unitarized Regge-theory formulas, in which the unitarization is achieved by a renormalization scheme where the Pomeron (P) flux is interpreted as the probability for forming a diffractive (non-exponentially suppressed) rapidity gap and thereby its integral over all phase space saturates at the energy where it reaches unity. Differential cross sections are expressed in terms of the P^2-trajectory, $\alpha(t) = 1 + \epsilon + \alpha^'t = 1.104 + 0.25 \text{ (GeV}^{-2}) \cdot t$, the P-p coupling, $\beta(t)$, and the ratio of the triple-P to the P-p couplings, $\kappa \equiv g(t)/\beta(0)$. For large rapidity gaps, $\Delta y \geq 3$, for which P-exchange dominates, the cross sections may be written as,

\[
\frac{d^2\sigma_{SD}}{dt d\Delta y} = \frac{1}{N_{\text{gap}}(s)} \left[\frac{\beta^2(t)}{16\pi} e^{2[\alpha(t)-1]\Delta y} \right] \cdot \left\{ \kappa \beta^2(0) \left(\frac{s^{'}}{s_0} \right)^{t} \right\}, \quad (4)
\]
\[
\frac{d^3\sigma_{DD}}{dt d\Delta y dy_0} = \frac{1}{N_{\text{gap}}(s)} \left[\frac{\kappa \beta^2(0)}{16\pi} e^{2[\alpha(t)-1]\Delta y} \right] \cdot \left\{ \kappa \beta^2(0) \left(\frac{s^{'}}{s_0} \right)^{t} \right\}, \quad (5)
\]
\[
\frac{d^4\sigma_{DPE}}{dt_1 dt_2 d\Delta y dy_0 y_c} = \frac{1}{N_{\text{gap}}(s)} \left[\Pi_i \left[\frac{\beta^2(t_i)}{16\pi} e^{2[\alpha(t_i)-1]\Delta y_i} \right] \right] \cdot \kappa \left\{ \kappa \beta^2(0) \left(\frac{s^{'}}{s_0} \right)^{t_1} \right\}, \quad (6)
\]

where t is the 4-momentum-transfer squared at the proton vertex, Δy the rapidity-gap width, and y_0 the center of the rapidity gap. In Eq. (6), the subscript $i = 1, 2$ enumerates Pomerons in a dpe event, $\Delta y = \Delta y_1 + \Delta y_2$ is the
total rapidity gap (sum of two gaps) in the event, and \(y_c \) is the center in \(\eta \) of the centrally-produced hadronic system.

The total cross section (\(\sigma_{\text{tot}} \)) is expressed as:

\[
\sigma^{pp}_{\text{tot}} = 16.79 s^{0.104} + 60.81 s^{-0.32} \pm 31.68 s^{-0.54} \quad \text{for } \sqrt{s} \leq 1.8 \text{ TeV}, \quad (7)
\]

\[
\sigma^{pp}_{\text{tot}} = \sigma^{CDF}_{\text{tot}} + \frac{\pi}{s_0} \left[\ln \left(\frac{s}{s_F} \right)^2 - \left(\ln \frac{s^{CDF}}{s_F} \right)^2 \right] \quad \text{for } \sqrt{s} \geq 1.8 \text{ TeV}, \quad (8)
\]

where \(s_0 \) and \(s_F \) are energy and the Pomeron flux saturation scales, respectively [7]. For \(\sqrt{s} \leq 1.8 \text{ TeV} \), where there are Reggeon contributions, we use the global fit expression [9], while for \(\sqrt{s} \geq 1.8 \text{ TeV} \), where Reggeon contributions are negligible, we employ the Froissart-Martin formula [10, 11, 12]. The two expressions are smoothly matched at \(\sqrt{s} \sim 1.8 \text{ TeV} \).

The elastic cross section is obtained from the global fit [9] for \(\sqrt{s} \leq 1.8 \text{ TeV} \), while for \(1.8 < \sqrt{s} \leq 50 \text{ TeV} \) we use an extrapolation of the global-fit ratio of \(\sigma_{el}/\sigma_{\text{tot}} \), which is slowly varying with \(\sqrt{s} \), multiplied by \(\sigma_{\text{tot}} \). The total non-diffractive cross section is then calculated as \(\sigma_{\text{ND}} = (\sigma_{\text{tot}} - \sigma_{el}) - (2\sigma_{SD} + \sigma_{DD} + \sigma_{CD}) \).

3 Results

In this section, we present as examples of the predictive power of the RENORM model some results reported by the TOTEM, CMS, and ALICE collaborations for \(pp \) collisions at \(\sqrt{s} = 7 \text{ TeV} \), which can be directly compared with RENORM formulas without using the PYTHIA8-MBR simulation. Figure 1 (left) shows a comparison of the TOTEM total, elastic, and total-inelastic cross sections, along with results from other experiments fitted by the COMPETE Collaboration [13]; the RENORM predictions, displayed as filled (green) squares, are in excellent agreement with the TOTEM results. Similarly, in Fig. 1 (right), good agreement is observed between the ALICE [14] and CMS [15] total-inelastic cross sections and the RENORM prediction.

The uncertainty shown in the RENORM prediction of \(\sigma_{\text{tot}} \) in Fig. 1 (left) is dominated by that in the scale parameter \(s_0 \). The latter can be reduced by a factor of \(\sim 4 \) if \(\sqrt{s_0} \) is interpreted as the mean value of the glue-ball-like object discussed in [16] and the data shown in Fig. 8 of [16] are used to determine its value. Work is in progress to finalize the details of this interpretation.

Another example of the predictive power of RENORM is shown in Fig. 2, which displays the total SD (left) and total DD (right) cross sections for \(\xi < 0.05 \), after extrapolation into the low mass region from the measured CMS cross sections at higher mass regions, presented in [17], using RENORM.

4 Summary

We reviewed our pre-LHC predictions for the total, elastic, total-inelastic, and diffractive components of the proton-proton cross section at high energies, which
Figure 1: (left) TOTEM measurements of the total, total-inelastic, and elastic pp cross sections at $\sqrt{s} = 7$ TeV shown with best COMPETE fits [13], with RENORM predictions added as filled squares; (right) ALICE [14] and CMS [15] measurements of the total inelastic cross section at $\sqrt{s}=7$ TeV show good agreement with the RENORM prediction (PYTHIA8-MBR).

KG*: this “data” point was obtained after extrapolation into the unmeasured low mass region(s) from the measured CMS cross sections [17] using the MBR model.

Figure 2: Measured SD (left) and DD (right) cross sections for $\xi < 0.05$ compared with theoretical predictions; the model embedded in PYTHIA8-MBR provides a good description of all data.

are based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors. We discuss single diffraction/dissociation, double diffraction/dissociation, and central diffraction or double-Pomeron exchange, comparing predictions with LHC measurements. Agreement between data and PYTHIA8-MBR predictions is found in all cases.

Acknowledgments

would like to thank Robert Ciesielski, my colleague at Rockefeller and collaborator in the implementation of the MBR simulation into PYTHIA8, and the Office
of Science of the Department of Energy for supporting the Rockefeller experimental diffraction physics programs at Fermilab and LHC on which this research is anchored.

References

