DIFFRACTIVE DIJET ANALYSIS

FULL UPDATE

QCD group, 8/26/2010

Primary authors: Michele Gallinaro and Dino Goulianos
GPs: Giorgio Bellettini and Mario Martinez Perez
documentation: CDF 7832 and CDF 7877
http://www-cdf.fnal.gov/internal/physics/godparents/diff_dijets/

first draft submitted to GPs: August 4, 2006 (see webpage)
update: August 4, 2006 (see webpage) - also more recently?
update talk to GPs: August 8, 2006
Contents

✓ Introduction
✓ Presentation of paper draft
 ❖ what remains to be blessed
✓ Discussion
p-p Interactions

Non-diffractive:
Color-exchange

Diffractive:
Colorless exchange carrying vacuum quantum numbers

Goal: understand the QCD nature of the diffractive exchange
Definitions

\[\xi, \eta \]

\[dN/d\eta \]

\[M_x \]

\[\Delta \eta = -\ln \xi \]
Diffraction at CDF

Elastic scattering

\[\sigma_T = \text{Im} f_{el} (t=0) \]

Total cross section

OPTICAL THEOREM

SD

Single Diffraction dissociation (SD)

Double Diffraction dissociation (DD)

Double Pomeron Exchange (DPE)

SDD

Single + Double Diffraction (SDD)

JJ, b, J/\psi, W

exclusive

JJ...ee...\mu\mu...\gamma

Thursday 25 August 2010 Diffractive Dijet Analysis Update Gallinaro/Goulianos 5
Run I - Diffractive Structure Function (DSF)

Breakdown of QCD factorization

$$\bar{p}p \rightarrow \bar{p} + \text{dijet} + X$$

Using preliminary pdf's from

- H1 2002 σ_D^{QCD} QCD Fit (prel.)

H1

CDF

same suppression as in soft diffraction

momentum fraction of parton in Pomeron

$F_D^p(\beta)$

$E_{T}^{\text{jet}} 1, 2 \geq 7 \text{ GeV}$

$Q^2 = 75 \text{ GeV}^2$

$0.035 \leq \xi \leq 0.095$

$|t| \leq 1.0 \text{ GeV}^2$
$\sigma^{T_{SD}} (pp \& \bar{p}p)$

- suppressed relative to Regge prediction

$\sigma^{T_{SD}}$ mb

Factor of $\sim 8 (~5)$ suppression at $\sqrt{s} = 1800 (540)$ GeV

$\xi < 0.05$
- Albrow et al.
- Armitage et al.
- UA4
- CDF
- E710
- Cool et al.

Standard flux
Renormalized flux

KG, PLB 358, 379 (1995)
M^2 scaling

$\Rightarrow d\sigma/dM^2$ independent of s over 6 orders of magnitude!

\[\frac{d\sigma}{dM^2} \propto \frac{S^{2\varepsilon}}{(M^2)^{1+\varepsilon}} \rightarrow 1 \]

\Rightarrow Independent of s over 6 orders of magnitude in M^2!

\Rightarrow renormalization

$\varepsilon \equiv \Delta$

\[\frac{1}{(M^2)^{1+\Delta}} \]

\Rightarrow factorization breaks down to ensure M^2 scaling!
Gap survival probability - S

$S = \frac{S_{1\text{-gap}/0\text{-gap}}}{S_{2\text{-gap}/1\text{-gap}}}$

$(1800 \text{ GeV}) \approx 0.23$

$(630 \text{ GeV}) \approx 0.29$
\[\sigma_{T_{SD}} \text{ and dijets} \]

\[\sigma \]

\[T \]

\[SD \]

\[\text{soft} \]

\[\text{dijet} \]

\[\xi \]

\[x \]

\[\beta = \frac{x}{\xi} \]

Magnitude: same suppression factor in soft and hard diffraction!

Shape of \(\beta \) distribution: ZEUS, H1, and Tevatron - why different slopes?
Diffractive dijet production in $\bar{p}p$ collisions at $\sqrt{s}=1.96$ TeV

M. Gallinaro, K. Goulianos, and K. Terashi

CDF collaboration

(Dated: August 18, 2010)

We report on a study of diffractive dijet production in $\bar{p}p$ collisions at $\sqrt{s}=1.96$ TeV using the CDF II detector at the Fermilab Tevatron $\bar{p}p$ collider. A data sample of 310 pb$^{-1}$ collected by triggering on a high transverse energy jet in coincidence with a recoil antiproton detected in a Roman pot spectrometer is used to measure the ratio of single-diffractive to inclusive dijet event rates as a function of the antiproton x-Bjorken (x_{Bj}) and $Q^2 \approx (E_T^{jet})^2$ in the range $10^{-3} < x_{Bj} < 0.1$ and $100 < Q^2 < 10^4$ GeV2, respectively. Results are presented for the region of p momentum loss fraction $0.03 < \tau < 0.09$ and a 4-momentum transfer squared $\tau_T < -4$ GeV2. The τ_T dependence is measured as a function of Q^2 and x_{Bj} and compared with that of inclusive single diffraction dissociation. We find a weak x_{Bj} and Q^2 dependence in the ratio of single diffractive to inclusive event rates and no significant Q^2 dependence in the diffractive $|\tau|$-distributions.

PACS numbers: 13.87.Ce,12.38.Qk,12.40.Na

I. INTRODUCTION

The CDF collaboration has reported several results on soft and hard diffraction obtained at the Fermilab Tevatron $\bar{p}p$ collider [1]-[18], three of which [6, 10, 14] are based on dijet events produced in single diffraction (SD) dissociation:

$$\bar{p} + p \rightarrow \bar{p} + \text{gap} + [\text{jet}_1 + \text{jet}_2 + X]. \quad (1)$$

These events are characterized by the presence of two jets in the final state and a leading antiproton which escapes the collision intact. A large forward rapidity gap (region of pseudorapidity devoid of particles) is present between the leading antiproton and the diffractive cluster, defined as the rapidity region in which particles are produced [20]. The result that has received the most attention is the breakdown of QCD factorization expressed as a suppression by a factor of $\sim \mathcal{O}(10)$ of the diffractive structure function (DSF) measured by CDF relative to that derived from fits to parton densities measured in diffractive deep inelastic scattering (DDIS) at the DESY e^+p collider HERA (see [10]). This striking result was further explored by CDF in studies of other diffractive processes, as briefly described below. The present measurement aims at further characterizing the properties of diffractive dijet production in an effort to decipher the QCD nature of the diffractive exchange, traditionally referred to as the Pomeron [21]-[23].

The CDF diffractive program started with the first Tevatron collider run in 1989, which is known as Run I-0. The program continued through Runs I-A, B, C (1992–1995), was extended through the use of upgrated detectors and new triggers in Run II–A (2003–2006) and Run II–B (2006–), and is now in its final phase of Run II data analysis. Two papers have already been published from Run II data [17, 18].

In Run I, several soft and hard diffraction processes were studied at $\sqrt{s}=1800$ GeV and in some cases at $\sqrt{s}=630$ GeV. Two types of hard diffraction results were obtained:

(a) gap results: diffractive to non-diffractive (ND) cross section ratios using the rapidity gap signature to select diffractive events;

(b) RPS results: diffractive to ND structure function ratios using a Roman Pot Spectrometer (RPS) to trigger on a leading antiproton.

The diffractive dijet production processes studied are shown schematically in Fig. 1. They include (a) single diffraction (SD), (b) double diffraction (DD), and (c) double Pomeron exchange (DPE) processes. For SD, results have also been obtained for W [5], b-quark [9], and J/ψ [13] production.

$$\sqrt{s} = 630 \text{ GeV}.$$

FIG. 1: Leading order schematic diagrams and $\eta\phi$ event topologies for dijet diffractive processes studied by CDF: (a) single diffraction (SD), (b) double diffraction (DD), and (c) double Pomeron exchange (DPE).

Soft diffraction processes studied include SD [3], DD [12], DPE [16], and single plus double diffraction (SDD) [15]. These processes are defined as follows:

- **SD** $\bar{p}p \rightarrow \bar{p} + \text{gap} + [p \rightarrow X_p]$,
- **DD** $\bar{p}p \rightarrow [\bar{p} \rightarrow X_p] + \text{gap} + [p \rightarrow X_p]$,
- **DPE** $\bar{p}p \rightarrow \bar{p} + \text{gap} + X_c + \text{gap} + p$,
- **SDD** $\bar{p}p \rightarrow \bar{p} + \text{gap} + X_c + \text{gap} + [p \rightarrow X_p]$,

where X_p (X_c) represent proton (central) dissociation clusters of particles.
The results obtained exhibit regularities in normalization and factorization properties that point to the QCD character of diffraction [24]. For example, at $\sqrt{s} = 1800$ GeV the SD/ND ratios, also referred to as diffractive-or gap-fractions, for dijet, W, b-quark, and J/ψ production, as well the ratio of DD/ND dijet production, are all $\approx 1\%$. This value is suppressed relative to standard QCD-inspired theoretical expectations (e.g. 2-gluon exchange) by a factor of ~ 10, which is comparable to the suppression factor observed in soft diffraction relative to Regge theory based predictions. However, except for an overall suppression in normalization, factorization approximately holds among different processes at fixed \sqrt{s} [24].

In Run II, the main goal of the diffractive program of CDF has been to obtain results which can help decipher the QCD nature of the diffractive exchange. In this paper, we report on the x-Bjorken, Q^2 and t dependence of the diffractive structure function measured from dijet production in association with a leading antiproton in $\bar{p}p$ collisions at $\sqrt{s}=1.96$ TeV and compare our results with results from HERA and with theoretical expectations.

The paper is organized as follows: in Sec. II we discuss the method we use to extract the DSF, in Sec. III we describe the experimental apparatus, in Secs. IV and V we discuss the data sets and data analysis, in Sec. VI we present the results, and in Sec. VII we summarize the results and draw conclusions.

II. METHOD

The cross section for inclusive dijet production in $\bar{p}p$ collisions can be written as

$$\frac{d^3\sigma_{incl}^{jj}}{dx_p dx_{\bar{p}} dt} = \frac{F_{jj}(x_p, Q^2)}{x_p} \cdot \frac{F_{jj}(x_{\bar{p}}, Q^2)}{x_{\bar{p}}} \cdot \frac{d\sigma_{jj}}{dt},$$ \hspace{1cm} (2)

where x_p ($x_{\bar{p}}$) is the Bjorken variable representing the momentum fraction of the interacting parton in the proton (antiproton), Q^2 is the momentum transfer squared, $F_{jj}(x_p, Q^2)$ and $F_{jj}(x_{\bar{p}}, Q^2)$ are structure functions, σ_{jj} is the scattering cross section of the two partons producing the final-state jets, and t is the square of the four-momentum transfer of the interacting partons.

The structure function relevant for dijet production is a color-weighted combination of gluon (g) and quark (q) terms given by:

$$F_{jj}(x, Q^2) = x \left[g(x, Q^2) + \frac{4}{9} \sum i q_i(x, Q^2) \right].$$ \hspace{1cm} (3)

In analogy with Eq. (2), the differential cross section for diffractive dijet production can be written as [25]

$$\frac{d^4\sigma_{SD}^{jj}}{dx_p dx_{\bar{p}} d\xi dt} = \frac{F_{jj}(x_p, Q^2)}{x_p} \cdot \frac{F_{jj}(x_{\bar{p}}, Q^2, \xi, t)}{x_{\bar{p}}} \cdot \frac{d\sigma_{jj}}{dt},$$ \hspace{1cm} (4)

where F_{SD}^{jj} is the DSF, which in addition to the usual dependence on x_p and Q^2 also depends on ξ, the forward momentum loss of the antiproton [20], and on t.

The jet energies measured in the CDF detector must be corrected for various detector effects, which depend on the jet energy and p-\bar{p} coordinates due to differences in calorimeter sub-system design and calorimeter interfaces [26]. The correction fraction generally increases as the jet energy decreases. To avoid systematic uncertainties associated with estimating corrections using Monte Carlo simulations, particularly for diffractively produced jets of relatively low E_T, we measure ratios of SD to inclusive production as a function of x-Bjorken and Q^2, for which jet energy corrections due to detector effects cancel out. Below, we will be referring to inclusive and non-diffractive (ND) dijet production interchangeably as the cross section for diffractive dijet production is $\lesssim 1\%$ of the cross section for inclusive dijet production.

The DSF is obtained by multiplying the ratio $R_{SD/ND}(x, \xi, t)$ of the SD to ND event densities $n_{SD}^{jj}(x, Q^2, \xi, t)$ and $n_{jj}^{jj}(x, Q^2)$ by the ND structure function $F_{jj}(x, Q^2)$:

$$F_{jj}(x, Q^2, \xi, t) = R_{SD/ND}(x, \xi, t) \cdot F_{jj}(x, Q^2).$$ \hspace{1cm} (5)

This method of measuring diffractive structure functions relies on the LO QCD expectation that cross sections are proportional to structure functions:

$$R_{SD/ND}(x, \xi, t) = \frac{n_{SD}^{jj}(x, Q^2, \xi, t)}{n_{jj}^{jj}(x, Q^2)} \approx \frac{F_{jj}(x, Q^2, \xi, t)}{F_{jj}(x, Q^2)}.$$ \hspace{1cm} (6)

Next to leading order corrections to $F_{jj}^{SD}(x, Q^2, \xi, t)$ obtained by this method are expected to be of $O(10\%)$ [27].

III. EXPERIMENTAL APPARATUS

The CDF II detector was equipped with special forward detectors [18, 28–30] designed to enhance the capabilities for studies of diffractive physics. These detectors included the RPS, the Beam Shower Counters (BSC), and the MiniPlug (MP) calorimeters. The RPS is a scintillator fiber tracker used to detect leading antiprotons; the BSC are scintillator counters installed around the beam-pipe at three (four) locations along the p (\bar{p}) direction and are used to identify rapidity gaps in the region $5.5 < |\eta| < 7.5$; and the MP calorimeters [29] are two lead-scintillator based forward calorimeters [29] covering the pseudorapidity region $3.6 < |\eta| < 5.1$. The forward detectors included a system of Cherenkov luminosity counters (CLC) [31], whose primary function was to measure the number of inelastic $\bar{p}p$ collisions per beam-bunch crossing and thereby the luminosity. The CLC covered the range $3.7 < |\eta| < 4.7$, which substantially...
overlaps the MP coverage. In this analysis, they were used for diagnostic purposes to refine the rapidity gap definition by detecting charged particles that might penetrate a MP without interacting and yield a pulse-height smaller than the MP tower thresholds and be undetected.

Figure 2 shows a schematic side view of the beam-line elements and forward detectors along the outgoing antiproton beam direction. The CLC, which was located inside the toroid, is not shown. The RPS comprises three Roman pot stations located at a distance of ~57 m from the nominal interaction point (IP) along the outgoing \(\bar{p} \) direction. Each station is equipped with one Roman Pot Trigger (RPT) counter and an 80-channel scintillator-fiber tracker, which can be used to reconstruct tracks both in the \(X \) (horizontal) and \(Y \) (vertical) coordinates. The tracking information in conjunction with the IP coordinates provided by the central detector can be used to calculate the variables \(\xi \) and \(t \) of the recoil antiproton. During running, the RPS detectors were brought up to a distance of \(X \approx 1 \) cm from the outgoing antiproton beam, with the incoming proton beam positioned ~2 mm further away. In Run I, in which data were taken at lower luminosities, the RPS detectors were positioned at approximately the same distance from the antiproton beam, but the more intense proton beam was in-between the antiproton beam and the detectors. Reversing the polarity of the accelerator electrostatic beam separators brought the antiproton beam on the RPS side and enabled running with the detectors at the same distance from the antiproton beam at the higher luminosities of Run II.

The CDF I and CDF II main detectors are multipurpose detectors described in detail in Refs. [32, 33]. The most relevant components of CDF II for this analysis are the charged particle tracking system and the central and plug calorimeters. The tracking system consists of a silicon vertex detector surrounded by the Central Outer Tracker (COT) [35]. The part of the silicon vertex detector used is the SVX II [34], composed of double-sided microstrip silicon sensors arranged in five cylindrical shells of radii between 2.5 and 10.6 cm. The COT is an open-cell drift chamber consisting of 96 layers organized in 8 superlayers with alternating structures of axial and \(\pm 2^\circ \) stereo readout within a radial range between 40 and 137 cm. Surrounding the tracking detectors is a superconducting solenoid, which provides a magnetic field of 1.4 T. Calorimeters located outside the solenoid are physically divided into a central calorimeter (CCAL) [36, 37], covering the pseudorapidity range \(|\eta| < 1.1 \), and a plug calorimeter (PCAL) [38], covering the region \(1.1 < |\eta| < 3.6 \). These calorimeters are segmented into projective towers of granularity \(\Delta \eta \times \Delta \phi \approx 0.1 \times 15^\circ \).

IV. DATA SAMPLES AND EVENT SELECTION

The Run I diffractive dijet results were obtained from diffractive data samples collected at low instantaneous luminosities to avoid background from overlapping events. Constrained by statistics, the \(Q^2 \) dependence of the DSF was measured over a limited range. Moreover, due to uncertainties in the beam position at the RPS location, it was difficult to reliably extract normalized \(t \)-distributions. In Run II, our goal was to obtain high statistics diffractive data samples with low overlap backgrounds from which to extract the \(Q^2 \) and \(t \) dependence over a wide range. To achieve this goal, we built special forward detectors, described above in Sec. III, implemented dedicated triggers, and developed analysis techniques for background subtraction and RPS alignment. In this section, we present the data samples and event selection requirements applied to produce the data sets from which the results were extracted.

This analysis is based on data from an integrated luminosity \(\mathcal{L} \approx 128 \) pb\(^{-1} \) collected in 2002–2003. Only “good runs” with a minimum \(\mathcal{L} \approx 10 \) nb\(^{-1} \) are used, selected based on beam conditions, detector performance criteria, and the requirement that the following detector components be functional: CCAL, PCAL, MP, CLC, and BSC. Dedicated level 1, 2, and 3 triggers (L1, L2, and L3) accepted soft interaction events as well as hard interaction events containing high \(E_T \) jets. The latter were selected at the trigger level by requiring at least one calorimeter tower with \(E_T > 5, 20, \) or 50 GeV within \(\eta < 3.5 \). Leading antiprotons with fractional momentum loss in the range \(0.03 < \xi < 0.09 \) were detected using a threefold coincidence of the RPT counters.

Jets were reconstructed using a cone algorithm, in which the transverse energy of a jet is defined as \(E_T^{\text{jet}} = \sum_{i} E_i \sin(\theta_i) \) with the sum carried over all calorimeter towers at polar angles \(\theta_i \) within the jet cone. The midpoint algorithm [40] was used, which is an improved iterative cone clustering algorithm based on calorimeter towers with \(E_T > 100 \) MeV. The jets were corrected for detector effects and for contributions from the underlying event (UE) [26]. Dijet candidate events were required to have at least two jets with \(E_T > 5, 20, \) or 50 GeV depending on the event sample, and \(\eta < 2.5 \).

In order to explore the region of large transverse energy jets of relatively low cross sections, data samples of RPS triggered events in conjunction with the presence of a jet with \(E_T^\text{jet} \geq 5, 20, \) or 50 GeV in CCAL or PCAL were also studied. These samples are referred to as RPS-Jet5, RPS-Jet20, and RPS-Jet50. Corresponding ND samples (Jet5, Jet20, and Jet50) were used for comparison.

The majority of the data used in this analysis were recorded without tracking information. For these data, the value of \(\xi \) was evaluated from calorimeter information and will be referred to as \(\xi_T^{\text{CAL}} \) (see Sec. V C). The \(\xi_T^{\text{CAL}} \) was then calibrated against \(\xi \) obtained from the RPS, \(\xi_T^{\text{RPS}} \), using data from runs in which RPS tracking was available (see Sec. V E). Below we list the definitions of
the triggers used in data acquisition and the data selection requirements applied in obtaining the data samples for this analysis.

The following trigger definitions are used:

- **RPS**: triple coincidence among the three RPS trigger counters in time with a \(\bar{p} \) gate;
- **RPS\text{track}**: RPS with RPS tracking available (included in the RPS trigger);
- **J5, J20, J50**: jet with \(E^\text{jet}_T \geq 5, 20, 50 \) GeV in CCAL or PCAL;
- **RPS\text{-Jet}5 (Jet}20, Jet50)**: RPS in coincidence with J5, J20, J50.

The data selection requirements are listed below:

(i) good-run events: accepts events from runs with no problems caused by hardware or software failures during data acquisition;

(ii) \(E_T \) significance: selects events with missing transverse energy significance \(S < 2 \) to reject jet events in which there is \(E_T \) due to energy loss in calorimeter cracks and/or events with jets and (undetected) neutrinos, such as from \(W \rightarrow l\nu + jets \) [41];

(iii) \(N(\text{jet}) \geq 2 \): accepts events with two jets of \(E^\text{jet}_T \geq 5 \) GeV within \(|y^\text{jet}| \leq 2.5 \);

(iv) splash veto: rejects events that cause splashes (large number of hits) in the RPT counters;

(v) RPT: rejects events that could be triggered by accidental coincidences (less than 0.1%);

(vi) SD (0.03 < \(\xi^\text{CAL} \) < 0.09): accepts SD events with good efficiency while rejecting backgrounds from overlapping soft SD events that trigger the RPS and ND dijet event.

Table I lists the number of events surviving these requirements when applied successively to the data.

![CDF II Schematic Layout](image)

FIG. 2: Schematic layout of the CDF II central and forward detectors.

V. DATA ANALYSIS

In this section we discuss analysis details in the following sub-sections:

A – RPS dynamic alignment
B – RPS trigger efficiency
C – Antiproton momentum loss measurement
D – Multiple interactions
E – Calibration of \(\xi^\text{CAL} \)

a. Splash veto The splash events were studied using the SD\(\oplus \)RPS\text{track} data sample before applying the splash veto requirement. The sum of the ADC counts of the three RPT counters, \(\text{SumRPT} \equiv \sum_{i=1}^{3} \text{RPT}^\text{ADC} \), is used to reject splash events. Figure 3(a) shows \(\text{SumRPT} \) for events with/without a reconstructed RPS track. In the “RPS track” histogram the peak at \(\sim 3 \) 000 ADC counts is attributed to a single MIP traversing all three RPT counters. Two-MIP and three-MIP peaks are also discernible at \(\sim 6000 \) and \(\sim 9000 \) ADC counts, respectively.

Events labeled as “No RPS track” are the splash events. These events dominate the region of \(\text{SumRPT} > 5000 \). Detailed studies using different event samples indicate that splash events are likely to be due to high \(E_T \) diffractive events for which the \(\bar{p} \) does not reach the RPS but rather interacts with the material of the beam pipe in the vicinity of the RPS producing a spray of particles causing the splash. In the region of \(\text{SumRPT} < 5000 \), the “No RPS track” distribution has a peak similar to that seen in the events with a reconstructed RPS track. These events are interpreted as good events for which the track was not reconstructed due to either malfunction or inefficiency of the fiber tracker.

Events with \(\text{SumRPT} > 5000 \) are rejected. The retained events contain approximately 77 % of the RPT sample, as can be qualitatively seen in Fig. 3(b). These events, after applying the RPT selection requirement, constitute the SD event samples listed in Table I. Any possible inefficiency caused by the SumRPT cut is taken into account by folding a 6 % uncertainty into that of the extracted cross section (see Sec. VI B 1, Table III).
TABLE I: Events of data samples surviving successive selection requirements.

<table>
<thead>
<tr>
<th>Selection requirement</th>
<th>RPS</th>
<th>RPS-Jet5</th>
<th>RPS-Jet20</th>
<th>RPS-Jet50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>1 634 723</td>
<td>1 124 243</td>
<td>1 693 644</td>
<td>757 731</td>
</tr>
<tr>
<td>good-run events</td>
<td>1 431 460</td>
<td>955 006</td>
<td>1 421 350</td>
<td>561 878</td>
</tr>
<tr>
<td>E_T significance: $S_E \equiv E_T / \sqrt{\sum E_T^2} < 2$</td>
<td>1 431 253</td>
<td>950 776</td>
<td>1 410 780</td>
<td>539 957</td>
</tr>
<tr>
<td>$N(jet) \geq 2$: $E_{Tj}^2 > 5$ GeV,</td>
<td>59 157</td>
<td>557 615</td>
<td>1 168 881</td>
<td>521 645</td>
</tr>
<tr>
<td>splash veto</td>
<td>27 686</td>
<td>259 186</td>
<td>541 031</td>
<td>215 975</td>
</tr>
<tr>
<td>RPT</td>
<td>27 680</td>
<td>259 169</td>
<td>541 003</td>
<td>215 974</td>
</tr>
<tr>
<td>SD $(0.03 < \xi_{CAL} < 0.09)$</td>
<td>1 458</td>
<td>20 602</td>
<td>26 559</td>
<td>4 432</td>
</tr>
</tbody>
</table>

A. RPS dynamic alignment

The values of both ξ and t can be accurately determined from RPS reconstructed track coordinates and the position of the event vertex at the Interaction Point (IP) using the beam transport matrix between the IP and RPS. Crucial for this determination is the detector X–Y alignment with respect to the beam. Below, we describe a method developed to dynamically determine the alignment of the RPS detectors during the RPS data collection period. The resulting ξ_{RPS}^R distribution is used in Sec. V E to calibrate ξ_{CAL}^R.

The dynamic alignment method is illustrated in Fig. 4, where the curve represents a fit to the data (after alignment) with a form composed of two exponential terms,

$$\frac{d\sigma}{dt} = N_{norm} \cdot (A_1 \cdot e^{b_1 \cdot t} + A_2 \cdot e^{b_2 \cdot t}),$$

where N_{norm} is an overall normalization factor.

Alignment is achieved by seeking a maximum of the $d\sigma/dt$ distribution at $t = 0$ for these events. The implementation of the alignment method consist of introducing software offsets X_{offset} and Y_{offset} in the X and Y coordinates of the RPS detectors with respect to the physical beam-line, and iteratively adjusting them until a maximum for $|d\sigma/dt|$ at $t = 0$ is found at the (X,Y) position where the RPS fiber tracker is correctly aligned. Results for such a fit are shown in Fig. 5. The accuracy in ΔX and ΔY of the RPS alignment calibration obtained using the inclusive data sample, estimated from Gaussian fits to the distributions in Fig. 5 around their respective minimum values, is $\pm 60 \mu m$. This is limited only by the size of the data sample and the variations of the beam position during the time interval of data taking. The contribution of the latter is automatically folded into the overall uncertainty.

B. RPS trigger efficiency

Due to radiation damage, the position of the minimum ionizing particle (MIP) peak of the three RPT counters shifts to smaller ADC values as the integrated luminosity of the data sample increases. The same behavior is

F – MiniPlug contribution to ξ_{CAL}^R

G – Beam halo background
observed in all three trigger counters. As a direct consequence, the efficiency of the RPT triple coincidence decreases as a function of integrated luminosity. The RPT efficiency, ϵ_{RPT}, is measured from a sample of minimum bias (MB) data collected with a CLC$_p$-CLC$_p$ coincidence trigger. The ADC distribution of each RPT counter was determined for different periods of data-taking by triggering with the other two RPT counters. Results are shown in Table II for 9 data sets of approximately equal integrated luminosity obtained by sub-dividing the MB data sample. The efficiency ϵ_{RPT} listed is calculated as the number of events with at least 1000 ADC counts in each RPT counter (the trigger requirement) divided by the number of events with at least 500 ADC counts in each counter, which is the lowest ADC value of the MIP peak found among all three counters in all data sets:

$$\epsilon_{RPT} = \frac{N_{1,2,3}(ADC > 1000)}{N_{1,2,3}(ADC > 500)}.$$ \hspace{0.5cm} (8)

An uncertainty of 10% is assigned to ϵ_{RPT} to account for variations due to the choice of the lowest ADC value of the MIP peak as determined from an analysis of the ADC distributions. The degradation of the RPT counters is taken into account by correcting the number of SD events for the RPT efficiency as a function of integrated luminosity.

TABLE II: Data sets, corresponding values of integrated luminosity, L, and triple-coincidence RPT counter efficiencies, ϵ_{RPT}.

<table>
<thead>
<tr>
<th>Data set</th>
<th>L (pb$^{-1}$)</th>
<th>ϵ_{RPT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>set 0</td>
<td>12.9</td>
<td>0.78 \pm 0.08</td>
</tr>
<tr>
<td>set 1</td>
<td>24.0</td>
<td>0.75 \pm 0.08</td>
</tr>
<tr>
<td>set 2</td>
<td>20.3</td>
<td>0.69 \pm 0.07</td>
</tr>
<tr>
<td>set 3</td>
<td>6.4</td>
<td>0.57 \pm 0.06</td>
</tr>
<tr>
<td>set 4</td>
<td>29.2</td>
<td>0.51 \pm 0.05</td>
</tr>
<tr>
<td>set 5</td>
<td>16.3</td>
<td>0.46 \pm 0.05</td>
</tr>
<tr>
<td>set 6</td>
<td>18.9</td>
<td>0.48 \pm 0.05</td>
</tr>
<tr>
<td>set 7</td>
<td>25.5</td>
<td>0.43 \pm 0.04</td>
</tr>
<tr>
<td>set 8</td>
<td>22.1</td>
<td>0.40 \pm 0.04</td>
</tr>
</tbody>
</table>

C. Antiproton momentum loss measurement

The momentum loss of the \bar{p} is calculated using the pseudorapidity η' and transverse energy E_T of all the towers of the CCAL, PCAL, and MP calorimeters,

$$\xi_{\bar{p}}^{CAL} = \frac{1}{\sqrt{s}} \sum_{i=1}^{N_{tower}} E_T^i e^{-\eta'},$$ \hspace{0.5cm} (9)

where the sum is carried out over towers with $E_T > 100$ MeV for CCAL and FCAL and > 20 MeV for MP. Calibration issues of $\xi_{\bar{p}}^{CAL}$ are addressed below in
imposed with a MB event. Both types of overlap events are due to SD dijet events super-
no reconstructed vertex. A negligibly small fraction of di®ractive interaction that triggered the RPS but yielded mainly due to overlaps of a ND dijet event and a soft which form the broad peak centered at
r

»

FIG. 6: The distribution of calorimeter measured antiproton momentum loss fraction \(\xi_{CAL} \) for three data samples: (a) RPS-Jet5 (filled circles), (b) RPS(w/track)-Jet5-rescaled (filled stars), and (c) Jet5-rescaled (filled squares). The regions labeled SD and BG are respectively dominated by SD and background events consisting of a ND dijet event and a SD event that provides the RPS trigger. The RPS(w/track)-Jet5 and Jet5 distributions are normalized to the RPS-Jet5 distribution in the SD and BG regions, respectively.

The RPS-Jet5 data distribution is interpreted as follows:

b. Single diffractive region. The events in the SD region are mainly due to SD dijet production. The declining trend of the distribution below \(\xi_{CAL} \approx 0.05 \) occurs in the region where the RPS acceptance is decreasing.

c. Background region. The events in the BG region, which form the broad peak centered at \(\xi_{CAL} \approx 0.5 \), are mainly due to overlaps of a ND dijet event and a soft diffractive interaction that triggered the RPS but yielded no reconstructed vertex. A negligibly small fraction of the events in this region are due to SD dijet events superimposed with a MB event. Both types of overlap events should yield a value of \(\xi_{CAL} = 1 \), but the expected \(\delta \)-function is smeared by the resolution of the energy measurement in the calorimeters and shifted toward lower \(\xi \)-values by particles escaping detection either in the areas of the calorimeter interfaces or due to the imposed energy thresholds.

As the rate of overlap events increases with instantaneous luminosity \(\mathcal{L} \), the ratio of BG/SD events in the \(\xi_{CAL} \) distribution of the RPS+Jet5 event sample is expected to decrease with decreasing \(\mathcal{L} \). This effect is observed in the RPS-Jet5 data when binned in intervals of different \(\mathcal{L} \) (not shown in Fig. 6).

d. Diffractive events. The excess of the RPS-Jet5 events over Jet5 distribution in the SD region is mainly due to diffractive production. The fraction of ND events in the region of \(0.03 < \xi_{CAL} < 0.09 \) is \(\approx 12\% \). As the RPS acceptance depends on both \(\xi_{CAL} \) and \(t \), and \(t \) is not measured for each event, the background from ND events in the SD region is accounted for in a simple MC simulation designed to calculate the acceptance on an event-by-event basis. Inputs to this simulation are the \(\xi \) and \(t \) distributions measured from data in which RPS tracking was available. Each event generated within a given bin of \(\xi_{RPS} \) is weighted by a factor equal to the ratio of the total number of events over the number of SD signal events in the corresponding \(\xi_{CAL} \) bin of the RPS-Jet5 data plotted in Fig. 6.

D. Multiple interactions

Multiple interaction effects are handled by using the fraction of one-interaction events in the data sample to normalize the SD/ND event ratio in a multiple interaction environment. This fraction is estimated from a Pythia Monte Carlo generated sample of events containing the appropriate run-dependent fraction of multiple interactions for each run. The ratio of the number of one-interaction events \(N_{1\text{int}} \) to all events \(N_{\text{all}} \) decreases with increasing \(\mathcal{L} \) following a distribution well described by an exponential expression:

\[
\frac{N_{1\text{int}}}{N_{\text{all}}} \approx \exp[\ - c \cdot \mathcal{L}] ; \quad c \approx -0.34 \pm 0.06 \text{ cm}^2 \text{ sec}^{-1} \cdot 10^{-31}.
\]

(10)

Applying a vertex cut would eliminate a large fraction of ND overlap events, but might also reject diffractive events due to vertex reconstruction inefficiencies which depend on the event activity and therefore on both the \(\xi \)-value and the multiple interaction content. To avoid biasing the \(\xi \)-distribution we apply no vertex cut and correct for the ND overlap event contamination in evaluating cross sections.

E. Calibration of \(\xi_{CAL} \)

The measurement of \(\xi_{CAL} \) using Eq. (9) is calibrated by comparing the values obtained with those measured by the RPS, \(\xi_{RPS} \). The comparison is made using an event
sub-sample for which tracking information is available. The ξ_{RPS}^p distribution for these events is shown in Fig. 7.

![Figure 7: Distribution of antiproton momentum loss fraction ξ_{RPS}^p for events with a reconstructed RPS track from an event sub-sample for which RPS tracking is available.](image)

Figure 8 shows a two-dimensional scatter plot of ξ_{CAL}^p vs. ξ_{RPS}^p for the events with a reconstructed RPS track. An approximately linear relationship between ξ_{CAL}^p and ξ_{RPS}^p is observed along the peak of the distribution of entries in the region of $\xi_{\text{CAL}}^p \lesssim 0.1$ and $0.03 \lesssim \xi_{\text{RPS}}^p \lesssim 0.09$, where the diffractive events are expected. As already discussed, the entries with $\xi_{\text{CAL}}^p > 0.1$ are mainly due to ND dijet event with a superimposed soft SD overlap event. Without the measurement of ξ_{CAL}^p the overlap events would contribute a large and inseparable background to the SD events.

![Figure 8: Two-dimensional scatter plot of ξ_{CAL}^p vs. ξ_{RPS}^p for all events in the data sub-sample for which RPS tracking is available.](image)

For a quantitative calibration of ξ_{CAL}^p the data are divided into bins of width $\Delta \xi_{\text{RPS}}^p = 0.005$ and the ξ_{CAL}^p values in each bin are fitted with a Gaussian distribution. Figure 9 shows such a fit for the bin of $0.055 < \xi_{\text{RPS}}^p < 0.060$. The bell-shaped curve is a Gaussian fit in the region of $\xi_{\text{CAL}}^p < 0.1$.

![Figure 9: The distribution of antiproton fractional momentum loss ξ_{CAL}^p for events with ξ_{RPS}^p in the range $0.055 < \xi_{\text{RPS}}^p < 0.060$. The bell-shaped curve is a Gaussian fit in the region of $\xi_{\text{CAL}}^p < 0.1$.](image)

For a quantitative calibration of ξ_{CAL}^p vs. ξ_{RPS}^p for all the $\Delta \xi_{\text{CAL}}^p$ bins within the plateau region of $0.04 < \xi_{\text{RPS}}^p < 0.09$ of the ξ_{CAL}^p distribution of Fig. 7 are plotted in Fig. 10. A linear relationship is observed of the form $\xi_{\text{CAL}}^p = p_0 + p_1 \cdot \xi_{\text{RPS}}^p$.
The background in the ξ^{CAL}_p distribution due to beam halo was studied using a trigger provided by the machine clock at the nominal time the p and \bar{p} beam bunches cross the $z = 0$ position at the center of CDF II regardless of whether or not there is a pp interaction. This trigger, which is referred to as “zero-crossing,” leads to different data samples depending on additional conditions that may be imposed.

Three zero-crossing event samples were analyzed:
(a) zero-crossing inclusive;
(b) zero-crossing events with no reconstructed vertex;
(c) zero-crossing events with a RPS trigger requirement.

Figure 12 shows the ξ^{CAL}_p distribution for these samples. Three regions of ξ^{CAL}_p are of interest: (a) $\xi^{\text{CAL}}_p > 0.1$, where ND events dominate, (b) $10^{-3} < \xi^{\text{CAL}}_p < 0.1$, where SD events are expected, and (c) $\xi^{\text{CAL}}_p < 10^{-3}$, where “empty” events with one to a few CCAL or FCAL towers above threshold due to beam halo particles and/or due to calorimeter noise may contribute to ξ^{CAL}_p.

The contribution of a single CCAL or FCAL tower at $\eta = 0$ with $E_T = 0.2$ GeV (the threshold used) is estimated from Eq. 9 to be $\xi^{\text{CAL}}_p = 1 \times 10^{-4}$, which is well below the ξ-range of the RPS acceptance. At $\xi^{\text{CAL}}_p \sim 3 \times 10^{-4}$, we observe a background peak corresponding to an average of ~ 3 CCAL towers at an event rate of $\sim 5\%$ of the diffractive signal concentrated at $\xi^{\text{CAL}}_p \sim 0.05$. We estimate that an upward fluctuation by a factor of 100 would be required for this background to compete with the overlap background already present within the diffractive region of $0.03 < \xi^{\text{CAL}}_p < 0.09$. Because of the negligible probability of such a fluctuation, no correction is applied to the data for beam halo background.

VI. RESULTS

Our results are presented in three sub-sections. In VI A we discuss certain kinematic distributions that establish the diffractive nature of the events in our data samples, in VI B we present ratios of SD to ND production rates and extract the diffractive structure function, and in VI C we report results on t-distributions.

A. Kinematic distributions

The presence of a rapidity gap in diffractive events leads to characteristic kinematic distributions. Here, we compare the SD and ND distributions of mean transverse jet energy $E_T^j = (E_T^{j1} + E_T^{j2})/2$, mean jet pseudorapidity $Y^j = (Y^{j1} + Y^{j2})/2$, jet azimuthal angle difference $\Delta \phi = |\phi^{j1} - \phi^{j2}|$, and MiniPlug multiplicity.
Entries

FIG. 12: The ξ_{CAL} distribution in zero-crossing (ZC) events (circles), ZC with no reconstructed vertices (squares), and ZC with a RPS trigger (triangles).

FIG. 14: The average η distribution $\eta^* = (\eta^{jet1} + \eta^{jet2})/2$ of the two highest E_T jets for SD and ND events. The ND distribution is normalized to the total number of SD events.

Entries

FIG. 13: The distribution of the mean dijet transverse energy $E_T^* = (E_T^{jet1} + E_T^{jet2})/2$ for SD and ND events. The ND distribution is normalized to the total number of SD events.

FIG. 15: The distribution of the azimuthal angle difference $\Delta \phi$ between the two highest E_T jets for SD and ND events. The ND distribution is normalized to the total number of SD events.

a. **Transverse jet energy** The mean dijet transverse energy, $E_T^* = (E_T^{jet1} + E_T^{jet2})/2$, is presented in Fig. 13 for SD and ND events. The total number of ND events is normalized to that of the SD events and the associated statistical uncertainties rescaled. The SD and ND distributions are very similar. The slightly narrower width of the SD distribution is attributed to the lower effective c.m.s. energy and to the larger content of forward jets, which tend to have a lower average E_T [27].

b. **Jet pseudorapidity** The mean dijet pseudorapidity distribution of the two leading jets, $\eta^* = (\eta^{jet1} + \eta^{jet2})/2$, is shown in Fig. 14 for SD and ND events. The ND events are centered around $\eta^* = 0$, while the SD distribution is shifted towards positive values (i.e. in the proton beam direction) due to the boost of the c.m.s. of the \bar{p}-p collision.

c. **Azimuthal angle correlations** The distributions of the azimuthal angle difference between the two leading jets, $\Delta \phi = |\phi^{jet1} - \phi^{jet2}|$, are shown in Fig. 15 for SD and ND events. The SD dijets are more back-to-back than the ND ones, as would be expected from the reduced available sub-energy of the diffractive system.

d. **MiniPlug multiplicity** The MP^* multiplicity distribution for SD and ND events is shown in Fig. 16. Multiplicities are evaluated by counting the number of peaks above calorimeter tower noise levels using “seed” towers with a minimum transverse energy of 20 MeV [30]. Such peaks originate from three sources: (a) charged hadrons traversing the MP without interacting, (b) charged and
neutral hadrons interacting in the material of the MP plates, and (c) electro-magnetic energy deposited by e^+/e^-/γ's. The SD events have smaller multiplicites in comparison with the ND events, as expected from the reduced c.m.s. energy of the Pomeron-proton relative to the pp collision.

B. Ratio of SD to ND production rates and the diffractive structure function

The ratio $R \equiv R_{SD/ND}(x, \xi, t)$ of the SD to ND dijet production rates, which in LO QCD is proportional to the ratio of the corresponding structure functions (see Sec. II), is measured as a function of the Bjorken scaling variable x_{Bj} of the struck parton of the antiproton and the 4-momentum transfer squared $Q^2 \approx (E_T^p)^2$. For each event, x_{Bj} is evaluated from the E_T and η values of the jets using the formula

$$x_{Bj}^p = \frac{1}{\sqrt{s}} \sum_{i=1}^{3-\text{jets}} E_T^i e^{-\eta^i},$$

where the sum is carried out over the two leading jets plus a third jet of $E_T > 5$ GeV, if present. Theoretically, the sum should be over all jets in the final state, but the fraction of events with more than three jets of $E_T > 5$ GeV is relatively small and including them in the evaluation of x_{Bj} does not significantly affect the obtained results [27].

Jet energies are measured using a cone algorithm based on measuring the “visible” energy deposited in the detector within a cone of radius $R_{cone} = \sqrt{\delta p_T^2 + \delta \phi^2}$ = 0.7 and applying appropriate corrections [26]. Both the SD and ND jets contain within the jet cone an amount of underlying event (UE) energy from soft spectator partonic interactions, which we subtract from the measured jet energy. For diffractive events, where a large fraction of the event energy is carried away by the recoil antiproton, the amount of UE energy is expected to be smaller than in ND events.

The UE energy in SD events was measured using the sample of RPS inclusive triggered data. To suppress overlap backgrounds, we required the events to be in the region of $0.01 < \xi^{\text{CAL}} < 0.14$, which is dominated by SD events from a single pp interaction. We then selected events with only one reconstructed vertex with $|z_{xen}| < 60$ cm ($\sim 1 \sigma$) and measured the ΣE_T of all central calorimeter towers within a randomly chosen cone of radius $R_{cone} = 0.7$ in the region $0.1 < |\eta| < 0.7$. The UE energy in MB (ND dominated) events was also measured using the random cone technique. From these two measurements we obtained an average UE E_T of 0.90 GeV (1.56 GeV) for SD (ND) events.

1. x_{Bj} dependence

The ratio R of the number of SD dijet events per unit ξ over the number of ND events of the Jet5 sample is corrected for the effect of multiple interactions and for the RPS detector acceptance.

To account for multiple interactions contributing to the ND sample, the ND x_{Bj} distribution is weighted by the factor $f^{1,\text{int}} = \exp[-c \cdot L]$, where L is the instantaneous luminosity and $c = -0.34 \pm 0.06 \text{ cm}^2 \text{sec} \cdot 10^{-31}$ (see Sec. V D). This correction is not applied to the SD events, since contributions from additional interactions shift E_T^{CAL} into the BG region.

The number of SD events is corrected for the RPS acceptance, which is estimated from a beam-optics simulation to be $\epsilon_{\text{RPS}} = 0.80 \pm 0.04 \text{ (syst.)}$ [18], and the obtained SD and ND data samples are normalized to their respective integrated luminosities.

The results for the ratio R for events within $0.03 < \xi < 0.09$ are presented in Fig. 17 as a function of $\log_{10} x_{Bj}$ along with the results obtained in Run I for $0.035 < \xi < 0.095$ and $|t| < 1 \text{ GeV}^2$ [10]. Both the Run I and Run II results have an estimated $\pm 25\%$ systematic uncertainty in the overall normalization [10]. The shapes of the two distributions are in good agreement, except in the high x_{Bj} region where the Run I distribution is seen to extend to higher x_{Bj} values. This behavior is expected from the difference in the acceptance for jets in RunI (Run II), which is $(E_T^p) \approx 7 \text{ GeV}$ (12 GeV) GeV and $|\eta| < 3.7$ ($|\eta| < 2.7$). This difference results in a larger x_{Bj} reach in Run I by a factor of $(12/7) \times e^{3.7-2.7} \approx 2$, as estimated using Eq. 11.

A fit to all Run II data in the range $0.03 < \xi < 0.09$ using the form $R = R_o \cdot x_{Bj}^\beta$ subject to the constraint $\beta = (x/\xi) < 0.5$ [10] yields $r = -0.44 \pm 0.04$ and $R_o = (8.6 \pm 0.8) \times 10^{-3}$. This result is compatible with the Run I result of $r = -0.45 \pm 0.02$ and $R_o = (6.1 \pm 0.1) \times 10^{-3}$ obtained by a constrained fit of the form $R = R_o \cdot x_{Bj}^{\beta}$.
(x_{ Bj}/0.0065)^r designed to match the data at the average value of x_{ Bj}/0.0065, which accounts for the lower R_o value.

The systematic uncertainties in R_o and r are listed in Table III. The causes of uncertainty investigated include the underlying event, the energy scale, the calorimeter tower E_T thresholds, overlaps in ND events, instantaneous luminosity L, bunch-by-bunch variation in L, RPS acceptance, andsplash events.

a. Underlying event The underlying event energy is subtracted from the jet energy when the jet energy corrections are applied. The results presented are for a ±30% variation of the UE energy correction, which is sufficient to cover the uncertainty for jets depositing energy near the interfaces or the outer edges of a calorimeter.

b. Energy scale The effect of the energy scale of the CCAL, PCAL and MP calorimeters on E_T^{CCAL} and thereby on R_o and r was estimated by changing the CCAL and PCAL jet energies by ±5% and the MP tower energies by ±30%. These values were obtained from detailed studies of relevant data samples.

c. Tower E_T threshold Tower energy threshold effects would generally be expected to cancel out in measuring the ratio of rates. However, due to the different UE event contributions in SD and ND events, the tower thresholds applied could affect the result. The uncertainty in R for jets with mean transverse energy of E_T > 10 GeV (E_T > 12 GeV) due to tower threshold effects is estimated to be ±1% (+2%). The effect on both R_o and on r for our total SD event sample is ±1%.

d. Overlaps in ND events To account for event overlaps in ND events occurring at high instantaneous luminosities the ND, each event is weighted by a factor of w = \exp[n \cdot L], where n = -0.34 ± 0.06 cm^2 sec \cdot 10^{-31} (see sec. VD). The uncertainty in n has a ±8% effect on the determination of R_o.

e. Instantaneous luminosity L We estimate an uncertainty of ±3% in the determination of R_o due to a variation of ±6% in L during the data collection period.

f. Bunch-by-bunch variation in L A bunch-by-bunch variation of ~50% in L over the collection of our data sample contributes a ±4% systematic uncertainty in R_o.

g. RPS acceptance Using a MC simulation, the uncertainty in R_o was estimated to be ±10%.

h. Splash events By evaluating the differences among data sub-samples, a systematic uncertainty of ±6% is estimated due to the cut applied to remove the splash events (see Table IV).

Added in quadrature, the above uncertainties yield ΔR (syst.) = ±18 % and Δr (syst.) = ±6 %.

Table III: Systematic uncertainties in R_o and r

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Variation</th>
<th>ΔR_o</th>
<th>Δr</th>
</tr>
</thead>
<tbody>
<tr>
<td>underlying event</td>
<td>±30%</td>
<td>±3%</td>
<td>±5%</td>
</tr>
<tr>
<td>central/plug cal. energy scale</td>
<td>±5%</td>
<td>±8%</td>
<td>~3%</td>
</tr>
<tr>
<td>Miniping energy scale</td>
<td>±30%</td>
<td>±6%</td>
<td>±1%</td>
</tr>
<tr>
<td>tower E_T threshold</td>
<td>±10%</td>
<td>±1%</td>
<td>±1%</td>
</tr>
<tr>
<td>overlaps in ND events</td>
<td>±20%</td>
<td>±8%</td>
<td><1%</td>
</tr>
<tr>
<td>instantaneous luminosity</td>
<td>±6%</td>
<td>±3%</td>
<td>N/A</td>
</tr>
<tr>
<td>bunch by bunch luminosity</td>
<td>±50%</td>
<td>±4%</td>
<td>N/A</td>
</tr>
<tr>
<td>RPS acceptance</td>
<td>N/A</td>
<td>±10%</td>
<td>N/A</td>
</tr>
<tr>
<td>splash events</td>
<td>N/A</td>
<td>±6%</td>
<td>N/A</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>±18%</td>
<td>±6%</td>
<td></td>
</tr>
</tbody>
</table>

2. Q^2 dependence

As discussed in Sec. IV, special data samples collected with dedicated triggers are used to extend the measurement of the jet energy spectrum to E_T^{jet} ~100 GeV. Results for the ratio R obtained from an analysis of these samples similar to that described above are presented in Fig. 18 for Q^2 defined as \langle E_T^{j}\rangle^2 in the range of ~ 100 < Q^2 < 10^6 (GeV/c)^2. These distributions are only affected by the overall uncertainty in normalization, as the relative uncertainties between different Q^2 bins cancel out in measuring the ratio. A factor of ≤ 2 variation among all distributions is observed over the entire Q^2 range, as compared to a factor of ~ 10^4 over the same range between the individual SD and ND distributions shown in Fig. 13. The results of fits performed using the form R = R_o \cdot x_{ Bj}^\beta in the region 0.001 < x_{ Bj} < 0.025, where the constraint β = (x/ξ) < 0.5 is satisfied, are presented for different jet E_T^{jet} intervals in table IV. Both R_o and β are constant within the uncertainties over the entire range of
\(10^2 < Q^2 < 10^4 \text{ (GeV/c)}^2\). This result indicates that the \(Q^2\) evolution in diffractive interactions is similar to that in ND interactions [42].

TABLE IV: Fit parameters of the ratio of SD/ND production rates for events in different \(E_T\) bins. The ratios are fitted to the form \(R = R_0 \cdot x_{Bj}^{\alpha}\) in the range of 0.001 < \(x_{Bj}\) < 0.025.

<table>
<thead>
<tr>
<th>Jet (E_T) [GeV]</th>
<th>(Q^2) (GeV/c)²</th>
<th>(R_0)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 < (E_T) < 12</td>
<td>100</td>
<td>(8.6 ± 0.8) (\times 10^{-3})</td>
<td>-0.44 ± 0.04</td>
</tr>
<tr>
<td>18 < (E_T) < 25</td>
<td>400</td>
<td>(8.0 ± 1.6) (\times 10^{-3})</td>
<td>-0.48 ± 0.05</td>
</tr>
<tr>
<td>35 < (E_T) < 50</td>
<td>1,600</td>
<td>(6.3 ± 1.8) (\times 10^{-3})</td>
<td>-0.60 ± 0.07</td>
</tr>
<tr>
<td>50 < (E_T) < 70</td>
<td>3,000</td>
<td>(5.5 ± 5.0) (\times 10^{-3})</td>
<td>-0.64 ± 0.22</td>
</tr>
<tr>
<td>70 < (E_T) < 90</td>
<td>6,000</td>
<td>(7.0 ± 7.0) (\times 10^{-3})</td>
<td>-0.58 ± 0.26</td>
</tr>
</tbody>
</table>

BLESS

C. \(t\)-distribution

The \(t\)-distribution was measured for two data samples, the SD+RPS\textsubscript{track} (RPS, circles) and the SD+RPS\textsubscript{track}-Jet5 (RPS-Jet5, triangles). In Sec. VIC1, we discuss the \(t\)-distribution in the region of 0 < \(|t| < 1 \text{ (GeV/c)}^2\) as a function of jet \((E_T)^2 \equiv Q^2\) and extract the dependence of the slope parameter at \(|t| \approx 0\) as a function of \(Q^2\); and in Sec. VIC3, we examine the shape of the \(t\)-distribution in the region up to \(|t| = 4 \text{ (GeV/c)}^2\) and search for a diffraction minimum. Crucial for the measurement at \(|t| > 4 \text{ (GeV/c)}^2\) is the background subtraction.

a. Background evaluation The background was evaluated from the data by taking advantage of the asymmetric placement of the RPS detectors during data taking. As shown in Fig. 5, the dynamic alignment method yields \(Y_{\text{offset}} \approx 0.25 \text{ cm}\) and \(X_{\text{offset}} \approx 0\). The non-zero value of \(Y_{\text{offset}}\) results in an asymmetric \(t\)-range in the acceptance. Since the RPS detectors are 2 cm wide, and given that \(t \propto -\theta_{\text{pp}}\) where \(\theta_{\text{pp}} \approx Y_{\text{offset}}\), the \(|t|\)-range of the RPS acceptance is expected to be a factor of \((1+0.25)/(1-0.25)^2 = 2.8\) larger in the \(Y_{\text{track}} > Y_0\) than in the \(Y_{\text{track}} < Y_0\) region, where \(Y_0\) is the \(Y = 0\) centerline of the detector.

Figure 19 shows \(t\)-distributions of SD+RPS\textsubscript{track} data for 0.05 < \(\xi_{\text{RPS}} < 0.08\). Two distributions are shown, one for \(Y_{\text{track}} > Y_0\) and the other for \(Y_{\text{track}} < Y_0\).

The \(Y_{\text{track}} > Y_0\) distribution falls exponentially down to \(|t_1| \approx 2.3 \text{ (GeV/c)}^2\) and becomes consistent with an average flat value of \(N_{\text{bg}} = 2/(\text{GeV/c})^2\) in the unphysical region of \(|t| > |t_1|\). We have verified that the event rate at \(|t| > |t_1|\) scales with that at \(|t| \sim 0\) for runs with different instantaneous luminosities and conclude that these events represent a background associated with a \(pp\) interaction. However, since the reconstructed track is outside the RPS acceptance, its origin appears to be a particle from the \(\bar{p}p\) interaction that suffered a collision before reaching the PPS and either it or another particle originating from this collision traversed the RPS. Such secondary collisions would be expected to produce a flat distribution in the vicinity of the RPS in a plane perpendicular to the beam, consistent with the flat distribution observed at \(|t| > 2.5 \text{ (GeV/c)}^2\) for \(Y_{\text{track}} > Y_0\).

Based on the estimated values of \(|t_1| \approx 2.3 \text{ (GeV/c)}^2\) and the scaling factor of 2.8 for the detector vertical misalignment, the unphysical region for the \(Y_{\text{track}} < Y_0\) data is expected to lie at \(|t| > |t_2|\), where \(|t_2| = 2.3 \times 2.8 = 6.5 \text{ (GeV/c)}^2\). However, to reduce systematic uncertainties arising from edge-effects we present \(t\)-distributions only \(|t| \leq 4 \text{ (GeV/c)}^2\) (see Sec. VIC3).
A to data with only statistical uncertainties are shown in to fit the data and obtain the values of the slopes. Fits for different \bar{b} and for the ratios $\bar{b}/\bar{b}^{\text{incl}}$ resulting slope, and the systematic uncertainties in the TABLE V: Slopes of t-distributions for soft and hard dijet events of the SD±RPS data in the range $0.05 < \xi^{\text{RPS}}_p < 0.09$ for different $\langle E_T^t \rangle$ or $Q^2 \equiv \langle E_T^t \rangle^2$ bins obtained from fits to the form of Eq. (7), $d\sigma/dt = N \cdot (A_1 \cdot e^{b_1 \cdot t} + A_2 \cdot e^{b_2 \cdot t})$, with $A_2/A_1 = 0.11$ (see text). The uncertainties listed are statistical.

<table>
<thead>
<tr>
<th>Event-sample</th>
<th>$\langle E_T^t \rangle$ (GeV)</th>
<th>Q^2 (GeV/c)2</th>
<th>$-b_1$ (GeV/c)$^{-2}$</th>
<th>$-b_2$ (GeV/c)$^{-2}$</th>
<th>b_1/b_1^{incl} ratio</th>
<th>b_2/b_2^{incl} ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPS incl</td>
<td>∞</td>
<td>≈ 1</td>
<td>6.6 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td>1.00 ± 0.02</td>
<td>1.00 ± 0.03</td>
</tr>
<tr>
<td>RPS-Jet5</td>
<td>15</td>
<td>225</td>
<td>6.1 ± 0.5</td>
<td>1.6 ± 0.2</td>
<td>0.93 ± 0.07</td>
<td>1.08 ± 0.12</td>
</tr>
<tr>
<td>RPS-Jet20</td>
<td>30</td>
<td>900</td>
<td>6.2 ± 0.4</td>
<td>1.4 ± 0.1</td>
<td>0.94 ± 0.06</td>
<td>0.95 ± 0.09</td>
</tr>
<tr>
<td>RPS-Jet50</td>
<td>67</td>
<td>4500</td>
<td>6.8 ± 0.8</td>
<td>1.3 ± 0.2</td>
<td>1.04 ± 0.09</td>
<td>0.87 ± 0.12</td>
</tr>
</tbody>
</table>

b. Corrections The data are corrected by subtracting the background and dividing by the RPS acceptance. This is performed on an event-by-event basis, since the RPS acceptance depends on both t and ξ. For each event, the raw values of ξ and t are obtained from the RPS tracker and used to fill the bins of a histogram. The value entered into the histogram is reduced by the average background of $N_{\text{bg}} \times \Delta t$ events, where $|\Delta t|$ is the width of the t-bin, and increased by a factor of $1/A(t, \xi)$, where $A(t, \xi)$ is the RPS acceptance obtained from simulation. The number of entered events is set to zero if found to be ≤ 0 after subtracting the background.

1. The b-slope at $t = 0$

Here we discuss the event selection requirements used for the measurement of the slope parameter at $t = 0$, the resulting slope, and the systematic uncertainties in the measurement.

Event selection. To minimize the effect of migration of events to and from adjacent ξ bins caused by resolution effects, events are selected in the region of $|t| \leq 1$ (GeV/c)2 and $0.05 < \xi^{\text{RPS}}_p < 0.09$ where the RPS acceptance is approximately flat (see Fig. 7). To reject overlap backgrounds, these events are further required to be within $\xi^{\text{CAL}}_p < 0.1$ where the SD events dominate (see Fig. 6). The same expression that was used in the RPS dynamic alignment in Sec. VA, composed of two exponential terms with slopes b_1 and b_2 (Eq. 7), was used to fit the data and obtain the values of the slopes. Fits to data with only statistical uncertainties are shown in Fig. 20 for different Q^2 ranges. Systematic uncertainties are discussed below.

b-slope. Results for the slope parameters b_1 and b_2 and for the ratios b_1/b_1^{incl} and b_2/b_2^{incl} are presented in Table V. The ratios b_1/b_1^{incl} and b_2/b_2^{incl} are plotted in Fig. 21 with the ratio for the inclusive sample arbitrarily displayed at $Q^2 = 1$ (GeV/c)2. No significant Q^2 dependence is observed over the entire range of $1 \leq Q^2 < 10^4$ (GeV/c)2. The mean values of b_1 and b_2 over all data samples are 6.27 ± 0.30 (GeV/c)$^{-2}$ and 1.42 ± 0.11 (GeV/c)$^{-2}$, respectively. The measured slopes of the inclusive sample are in agreement with theoretical expectations [43].

Systematic uncertainties. We considered the dependence of the results on the RPS fiber tracker thresholds, the instantaneous luminosity, and the beam store and run number.

a. RPS fiber tracker thresholds Tracks in the RPS are reconstructed from hits above fiber threshold. A threshold value of 30 ADC counts is used for all three RPS stations. The slope values change by $+1\% \ (-1\%)$ when the threshold is lowered down to 20 (raised up to 35) ADC counts, which represent a decrease (increase) that doubles (reduces by 50\%) the number of noise hits in the fiber tracker.

b. Instantaneous luminosity The RPS inclusive sample was divided into two sub-samples: one consisting of events collected at low instantaneous luminosities, $L < 1.5 \cdot 10^{31}$cm$^{-2}$sec$^{-1}$, and the other of events collected at $L > 3.5 \cdot 10^{31}$cm$^{-2}$sec$^{-1}$. A less than 2\% difference between the slopes extracted from the two samples is observed, which is well within the statistical uncertainty.

c. Beam store/run number Variations in beam conditions with beam store and segments within a store may

FIG. 20: [make changes in inset] The antiproton $|t|$ distribution for the SD±RPS data samples.
The values for b were assigned for this effect.

To estimate the uncertainty associated with varying beam conditions we measured the b-slopes of data sub-samples from different beam stores and different run numbers within a store. The values for b_1 and b_2 obtained were within the corresponding statistical uncertainties. A systematic uncertainty equal to the statistical uncertainty was therefore assigned for this effect.

d. Dynamic alignment A systematic uncertainty of 5% was estimated from the fits shown in Fig. 5 for the slope b_1 arising from the uncertainties of 0.05μ in the (X, Y) position of the RPS detectors relative to the \bar{p} beam.

The above systematic uncertainties are listed in Table VI.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>δb_1</th>
<th>δb_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPS tracker threshold</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Instantaneous luminosity</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Beam store / run number</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>RPS alignment</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Angular correlations

Using the SD@RPSjet5 data sample we have investigated correlations between the azimuthal angle of the outgoing antiproton and the dijet system. Two results have been obtained: one for the average of the angles of the two leading jets, $\Delta \phi(J_1 + J_2, \bar{p}b)$ (circles), and the other for the angle of the leading jet, $\Delta \phi(J_1, \bar{p}b)$ (squares). The $\Delta \phi$ distributions are plotted in Fig. 22. Both distributions are consistent with being flat within the statistical uncertainties.

3. Search for a diffraction minimum in the t-distribution

We searched for a diffraction minimum in the t-distribution using inclusive SD@RPS jet and dijet SD@RPSjet5 data within $0.05 < \xi_{RPS} < 0.08$. This ξ-range corresponds to a mean mass for the diffractively dissociated proton $(M_X) > 500$ GeV/c2. The dijet data have $(Q^2) \approx 225$ (GeV/c)2. The t-distributions are plotted in Fig. 19. As already discussed, the background in these data samples is $N_{bg} = 2/(\text{GeV/c})^2$, as estimated from the unphysical region of $|t| > |t_1| = 2.5$ (GeV/c)2 for $Y_{track} > Y_0$.

Figure 23 shows distributions for the sum of both sides of the asymmetric distributions of Fig. 19 after background subtraction and acceptance corrections. The distributions are presented in a variable width histogram format. In filling up the histograms bins, a fraction is subtracted from each entry into a bin which is equal to the average background fraction in that bin, and the acceptance correction is then applied based on the RPS-measured values of ξ and t. The curve shown in the figure represents the electromagnetic form factor squared [43], $F_1(t)^2$, normalized to the $t = 0$ value of the RPS inclusive data in the region of $|t| < 0.5$ (GeV/c)2. The $F_1(t)$ form factor used is given by [43].
\[F_1(t) = \frac{4m_p^2 - 2.8t}{4m_p^2 - t} \left(\frac{1}{(1 - t/0.71)} \right)^2 , \]
and in SD it enters in the form [43]

\[\frac{d\sigma^{SD}}{dt} = N_{norm} \cdot F_1(t)^2 \cdot \exp\left[2\alpha' \cdot \ln \frac{1}{\xi} \cdot t \right] , \]

where \(\alpha' \) is the slope of the the Pomeron trajectory. In the range of \(|t| < 1 \) (GeV/c)^2 and 0.05 < \(\xi < 0.08 \) the two-component exponential form of Eq. (7) with \(A_2/A_1 = 0.11 \) which was used in the dynamic alignment method is a good approximation to that of Eq. (13) with \(\langle \xi \rangle = 0.065 \) substituted for \(\xi \).

The following features of the t-distributions are notable:

- **low-t region** (\(|t| \lesssim 0.5 \) (GeV/c)^2): the RPS data are in good agreement with the DL curve;
- **scale independence**: the distributions of the RPS and RPS-Jet5 data are similar in shape;
- **high-|t| region** (\(|t| \gtrsim 0.5 \) (GeV/c)^2): the RPS data lie increasingly higher than the DL curve as \(|t| \) increases, becoming approximately flat for \(|t| \gtrsim 2 \) (GeV/c)^2 with a hint of a broad minimum at \(|t| \sim 2.5 \) (GeV/c)^2.

BESS

![Diagram](image)

FIG. 23: [Change “Events” on vertical axis to “Events per \(\Delta|t| \) bin width and change “Fit to...” in the inset to “DL”] t-distributions corrected for RPS acceptance after background subtraction: (circles) RPS [SD\(\oplus \)RPS_track] data; (triangles) RPS-Jet5 [SD\(\oplus \)RPS_track_Jet5] data of \(\langle Q^2 \rangle \approx 225 \) (GeV/c)^2. The curve labeled DL represents the distribution expected for soft SD in the Donnachie-Landshoff model [43] (Eq. 13) normalized to the RPS data within \(|t| \lesssim 0.5 \) (GeV/c)^2.

The physics significance of these results are briefly discussed below.

- **Low-t region** The good agreement between the inclusive \(t \)-distribution and the DL prediction in this region serves as a pedestal for our search for deviations in the region of \(|t| \gtrsim 0.5 \) (GeV/c)^2 that could arise from a diffraction minimum.
- **Scale independence** The scale independence of the distributions points to a factorization property between the exchange that produces the recoiling \(p \) and the associated rapidity gap on one hand, and the final state into which the proton dissociates on the other. Such behavior favors models in which the hard scattering is controlled by the low-\(x \) parton distribution function of the recoiling antiproton, just as in ND interactions, while a color-neutral soft exchange allows the antiproton to escape intact forming the rapidity gap (see, e.g., Refs. [44]-[47]).
- **High-t region** A minimum ("dip") in the \(t \)-distribution could occur as a result of destructive interference between the real and imaginary parts of the scattering amplitude. Diffractional minimum in elastic scattering have been previously reported, and the position of the minimum has been found to depend on \(\sqrt{s} \), decreasing with increasing \(\sqrt{s} \) (see, e.g., Ref. [48]). Recently, the D0 collaboration reported a preliminary Tevatron Run II result on elastic pp scattering at \(\sqrt{s} = 1960 \) GeV, in which a minimum (broadened by resolution effects) is observed at \(|t| \sim 0.7 \) (GeV/c)^2 followed by a maximum ("bump") at \(|t| \sim 1 \) (GeV/c)^2 [49].

A minimum in a diffractive \(t \)-distribution has never been previously reported. Since the quasi-elastic diffractive scattering occurs at \(s' = \xi s < s \), a diffractive minimum would be expected to lie at a higher \(|t| \) than in elastic scattering and have a width broadened by the effects of the size of the bin \(\Delta \xi \) and of the \(t \) resolution.

The expected contributions to the width of a diffractive dip are summarized below:

(a) \(\xi \)-bin width: from Eq. (13), \(\Delta|t|_{\xi-bin} = \Delta \ln(1/\xi) = \ln(1/0.05) - \ln(1/0.08) = 0.47 \);

(b) \(\delta \xi \) and \(\delta t \) resolutions: from Refs. [10, 14], \(\delta \xi = 0.001 \) and \(\delta t = \pm 0.07 \) (GeV/c)^2 for \(|t| \approx 0.05 \) (GeV/c)^2 with a dependence \(\propto \sqrt{|t|} \), resulting for \(|t| \approx 2.5 \) (GeV/c)^2 in a value larger by a factor \(\sqrt{2.5/0.05} \approx 7 \) that yields \(\delta t_{res} \approx 0.5 \);

(c) total width expected: \(\Delta|t|_{|t|=2.5} = \Delta|t|_{\xi-bin} + \delta t_{res} \approx 1 \) (GeV/c)^2, where the contributions have been added linearly since the \(\xi \)-bin width simply is not a random variable.

The data plotted presented in Fig. 23 are consistent with the above analysis and thus represent the first observation of a diffraction minimum in a pp collisions.

VII. CONCLUSION

Results are presented from a measurement of diffractive dijet production in pp collisions at \(\sqrt{s} = 1.96 \) TeV,
The measured diffractive dijet production rates as a function of \(x_{Bj}^{\pi}\) (\(x\)-Bjorken), \(Q^2 \approx \langle E_T \rangle^2\), \(\xi_p\) and \(t_p\) are compared with the corresponding non-diffractive rates at the same \(x_{Bj}^{\pi}\) and \(Q^2\). The physics interest in these measurements is to elucidate the QCD nature of the diffractive exchange, traditionally referred to as Pomeron.

Our results are extracted from data samples of diffractive and non-diffractive events corresponding to \(310 \text{ pb}^{-1}\) of integrated luminosity. To reduce systematic uncertainties, the diffractive and non-diffractive data were collected simultaneously using the same calorimeter trigger to accept high-\(E_T\) jets, and were similarly analyzed. The measurements cover the region of \(0.03 < \xi_p < 0.09\), \(|t_p| \leq 4 \text{ (GeV/c)}^2\), \(0.001 < x_{Bj}^{\pi} < 0.09\) and \(10^2 \text{ (GeV/c)}^2 < Q^2 < 10^3 \text{ (GeV/c)}^2\).

The \(E_T^{\pi}\) distribution shapes are similar for SD and ND events, and the \(x_{Bj}^{\pi}\) distribution of the ratio of SD/ND production rates is relatively flat in the region of \(\beta = x/\xi \leq 0.5\), where \(\beta\) is the fraction of the momentum lost carried by the parton in the Pomeron that participates in the interaction. A fit of the form \(R = R_0 \cdot x_{Bj}^{\pi}\) in the region of \(0.001 < x_{Bj}^{\pi} < 0.025\), where \(\beta < 0.5\), yields \(r = -0.44 \pm 0.04\) and \(R_0 = (8.6 \pm 0.8) \times 10^{-3}\), consistent with the Run I CDF result of \(r = -0.45 \pm 0.02\) and \(R_0 = (6.1 \pm 0.1) \times 10^{-3}\) within the normalization systematic uncertainty of \(\pm 30\%\) common to the Run I and Run II data samples.

The \(Q^2\) dependence of the ratio of SD/ND rates is relatively weak, varying by less than a factor of \(\sim 2\) over the measured \(Q^2\) range within which the individual SD and ND distributions vary by a factor of \(\sim 10^4\) as observed in the \(E_T^n\) dependence of the differential cross sections.

The \(t\)-distributions for \(|t| < 1 \text{ (GeV/c)}^2\) can be fitted with a sum of two exponential terms of the form \(\frac{d\sigma}{dt} = N \cdot (A_1 \cdot e^{b_1 t} + A_2 \cdot e^{b_2 t})\). The slope parameters \(b_1\) and \(b_2\) are found to be independent of \(Q^2\) over the range of \(\sim 1 \text{ (GeV/c)}^2 < Q^2 < 10^4 \text{ (GeV/c)}^2\). The mean values of \(b_1\) and \(b_2\) are 0.27 \pm 0.30 (GeV/c)^{-2} and 1.42 \pm 0.11 (GeV/c)^{-2}, respectively. The measured slopes of the inclusive sample are in agreement with theoretical expectations [43].

A search for a diffraction minimum in the \(t\)-distribution was conducted using data with \(0.05 < \xi_p^{\text{RPS}} < 0.08\) and \(|t|\) up to \(4 \text{ (GeV/c)}^2\). Two event samples were studied, an inclusive sample and a dijet sample of \(\langle Q^2 \rangle \approx 225 \text{ (GeV/c)}^2\). The distributions for both samples are substantially flatter than the expectation from the electromagnetic form factor of the proton, Eq. (13), consistent with a diffraction minimum at \(|t| \sim 2.5 \text{ (GeV/c)}^2\) filled by \(t\)-resolution and \(\xi\)-dispersion effects. At \(|t| \sim 3 \text{ (GeV/c)}^2\), the measured cross section for the inclusive event sample is a factor of \(\sim 10\) larger than the value predicted by the proton electromagnetic form factor normalized to the data distribution in the region of \(|t| < 0.5 \text{ (GeV/c)}^2\).

The relatively flat \(x_{Bj}^{\pi}\) distribution and the small \(Q^2\) dependence of the diffractive to non-diffractive ratios, combined with the \(Q^2\) independence of the \(t\)-distributions, favor models of hard diffractive production in which the hard scattering is controlled by the parton distribution function of the recoil antiproton while the rapidity gap formation is governed by a color-neutral soft exchange [44]-[47].

Acknowledgments

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Instituto Nacional de Física Nucleare e Física des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme under contract HPRN-CT-2002-00292; and the Academy of Finland.

[19] Rapidity, \(y = \frac{1}{2} \ln \frac{E + p}{E - p} \), and pseudorapidity, \(\eta = -\ln \tan \frac{\theta}{2} \), are used interchangeably, since in the kinematic region of interest they are approximately equal.

[20] The rapidity gap width, \(\Delta y \), and the forward momentum loss fraction, \(\xi \), are kinematically related by \(\Delta y = -\ln \xi \).

[25] The diffracted (leading) nucleon is assumed to be the antiproton, which at CDF can be detected in a Roman Pot Spectrometer (RPS) installed along the outgoing \(\bar{p} \) direction (there is no RPS on the p side).

[41] Transverse energy is defined as \(E_T = E \sin \theta \), and missing \(E_T \) as \(\vec{E}_T = |\vec{E}_T| = -\sum E_{T,i} n_i \), where \(n_i \) is a unit vector perpendicular to the beam axis and pointing at the \(i^{th} \) calorimeter tower. The sum \(E_T \) is defined by \(\sum E_T = \sum E_{T,i} \). Both sums are over all calorimeter towers above the set thresholds. The missing \(E_T \) significance is defined as \(S_E \equiv E_T/\sqrt{\sum E_T^2} \).

[49] D0 preliminary result on elastic scattering.
Dijets - E_T distributions

- Similar for SD and ND over 4 orders of magnitude

Kinematics
Dijet DSF: x_{Bj} and Q^2 dependence

Diagram:

CDF Run II Preliminary

$E_T^{jet} \sim 100$ GeV!

- $Q^2 \approx 100$ GeV2
- $Q^2 \approx 400$ GeV2
- $Q^2 \approx 1,600$ GeV2
- $Q^2 \approx 3,000$ GeV2
- $Q^2 \approx 6,000$ GeV2
- $Q^2 \approx 10,000$ GeV2

Expression:

$0.03 < \xi^C_{P} < 0.09$

$Q^2 = \langle E_T^2 \rangle, \quad \langle E_T^2 \rangle = (E_T^{jet1} + E_T^{jet2})/2$

Overal syst. uncertainty: $\pm 20\%$ (norm), $\pm 6\%$ (slope)

Statement:

Small Q^2 dependence in region $100 < Q^2 < 10,000$ GeV2

\Rightarrow Pomeron evolves as the proton!
Dijets - diffractive structure function

t- dependence

Fit $d\sigma/dt$ to a double exponential

$$F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$$

- No Q2 dependence in slope from inclusive to $Q^2 \sim 10^4$ GeV^2
- Same slope over entire region of $\sim 1 < Q^2 < 4,500$ GeV^2
Exclusive Dijet and Higgs Production

Phys. Rev. D 77, 052004

ExHuME

DPEMC
Exclusive Dijet x-section vs. M_{jj}

Line: ExHuME hadron-level exclusive di-jet cross section vs. di-jet mass

Points: derived from CDF excl. di-jet x-sections using ExHuME

Stat. and syst. errors are propagated from measured cross section uncertainties using M_{jj} distribution shapes of ExHuME generated data.
Hard diffractive fractions

\(\bar{p}p \rightarrow (\bullet + X) + \text{gap} \)

 Fraction: SD/ND @ 1800 GeV

Run I

<table>
<thead>
<tr>
<th></th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJ</td>
<td>0.75 +/- 0.10</td>
</tr>
<tr>
<td>W</td>
<td>0.115 +/- 0.55</td>
</tr>
<tr>
<td>b</td>
<td>0.62 +/- 0.25</td>
</tr>
<tr>
<td>J/ψ</td>
<td>1.45 +/- 0.25</td>
</tr>
</tbody>
</table>

All fractions ~ 1% (differences due to kinematics)
- ~ uniform suppression
- ~ FACTORIZATION!
Diffraction at CDF: ongoing analyses

Diffractive dijets........Gallinaro under internal review
DSF in DPE.................Terashi final stages of analysis
Diffractive W/Z...........Convery under internal review
Central gaps...............Mesropian towards internal review
DSF from Dijets in Run II

\[R(x_{Bj}) = \frac{\text{Rate}_{jj}^{SD}(x_{Bj})}{\text{Rate}_{jj}^{ND}(x_{Bj})} \implies \frac{F_{jj}^{SD}(x_{Bj})}{F_{jj}^{ND}(x_{Bj})} \]

- The \(x_{Bj} \)-distribution of the SD/ND ratio has no strong \(Q^2 \) dependence
- the slope of the t-distribution is independent of \(Q^2 \)
- the t-distribution displays a diffraction minimum at \(|t| \sim 2.5 \text{ (GeV/c)}^2 \) (?)

➢ all three results ➢ “first observation”
DSF from Dijets in DPE

QCD factorization holds for the formation of the 2nd gap

\[\Delta \eta_{\text{gap}} \approx -\ln \xi \]

- \(E_{\text{T Jet1,2}} > 10 \, \text{GeV} \)
- \(3.6 < \eta_{\text{gap}} < 5.9 \)
- RP good track
- \(0.01 < \xi_{p\bar{p}X} < 0.12 \)

\[F_{jj}^D \]

\[\xi_{p\bar{p}}^{RPS} \text{ dependence} \]

\[\xi_p^X \text{ dependence} \]

Ratio falls off at low and high \(\xi_p^X \) → kinematics

\[\text{TEVATRON vs HERA} \]

\[\text{CDF data, based on DPE/SD} \]

\[\text{Expectation from H1 2002 } \alpha_p^D \text{ QCD Fit (prel.)} \]
Diffractive W/Z Production

- probes the quark content of the Pomeron

➢ use CAL and Roman pots to get η_v

$$\xi_{\text{cal}} = \sum_{\text{towers}} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

CDF (press release 2007): 80,413 +/- 48 MeV/c^2

RESULTS

$$R^W (0.03 < \xi < 0.10, |t|<1) = [0.97 \pm 0.05{\text{(stat)}} \pm 0.11{\text{(syst)}}] %$$

Run I: $$R^W = 1.15\pm0.55 \% (\xi<0.1) \Rightarrow \text{estimate} \ 0.97\pm0.47 \% (0.03 < \xi < 0.10 \ & \ |t|<1)$$

$$R^Z (0.03 < \xi < 0.10, |t|<1) = [0.85 \pm 0.20\text{(stat)} \pm 0.11\text{(syst)}] \%$$
Central gaps

The distribution of the gap fraction $R_{gap} = \frac{N_{gap}}{N_{all}}$ vs $\Delta \eta$ for MinBias ($CLC_p \cdot CLC_{pbar}$) and MiniPlug jet events ($MP_p \cdot MP_{pbar}$) of $E_{T(jet1,2)}>2$ GeV and $E_{T(jet1,2)}>4$ GeV. The distributions are similar in shape within the uncertainties.
Detectors

Figure 1: The CDF and D0 detectors in Run II
The MiniPlug Calorimeters

About 1500 wavelength shifting fibers of 1 mm dia. are 'strung' through holes drilled in 36×¼" lead plates sandwiched between reflective Al sheets and guided into bunches to be viewed individually by multi-channel photomultipliers.
Alignment of RPS using Data

Proposed for the FP420 project at the LHC

maximize the $|t|$-slope
⇒ determine X and Y offsets

±30 μ achieved at CDF in a low luminosity run
Diffraction at CMS

What can we learn/expect on elastic and diffractive scattering from the LHC experiments?

K. Goulianos
- contribution to the discussion session

2 What to do at the LHC

- understand the QCD basis of diffraction and discover new physics
- large \sqrt{s} ⇒ large $\sigma, \Delta \eta, E_T$
- from Tevatron to LHC: confirm, extend, discover...
 ⇒ confirm Tevatron results and extend them into the new kinematic domain
- elastic diffractive, total cross sections, and ρ-value
 ⇒ diffractive structure function: dijets vs. W-boson, ...
 ⇒ multi-gap configurations
 ⇒ jet-gap-jet: $d\sigma/d\Delta \eta$ vs. E_T^{jet} ⇒ BFKL, Mueller-Navelet jets

- FP420 project – forward proton at 420 - Joint CMS / ATLAS R&D project
- HPS project – high precision spectrometer - a CMS proposal
The engine of the diffractive program at LHC: EXCLUSIVE JJ & HIGGS BOSON PRODUCTION

\[M_H^2 = (p + \bar{p} - p' - \bar{p}')^2 \]

\[\Delta M \sim (1-2) \text{ GeV} \]

Determine spin of H
The FP420 Project

- **alignment**: study the use of our alignment method in FP420;
- **backgrounds**: study the backgrounds expected using our CDF experience;
- **physics**: explore physics aspects that may lead to discoveries.

An example of the latter is the measurement of the parton distribution density of the proton in the very low-x region accessible with the forward detectors.

FP420 project: http://www.fp420.com/

Measure protons at 420 m from the IP during normal high luminosity running to be used in conjunction with CMS and ATLAS

Feasibility study and R&D for Roman Pot detector development

- **Physics aim**: $pp \rightarrow p + X + p$ (Higgs, New physics, QCD studies)
- **Status**: Completed Jun 2008: arXiv:0806.0302
The HPS Project

CMS Internal Note (CONFIDENTIAL)

October 30th, 2009

High Precision Spectrometers – HPS Project

A staged installation is proposed starting with detectors at 240 m in 2010

“Diffraction at CDF and Cross Sections at the LHC”
- Talk in preparation for the annual Manchester meeting Dec 2009

The Roman-Pot Detectors at CDF

The three Roman pots each contain detectors consisting of:
- Trigger scintillation counter 2.1x2.1x0.8 cm³
- 40 X + 40 Y fiber readout channels
 - Each consists of 4 (→ bigger signal) clad scintillating fibers 0.8x0.8 mm² (new technology at the time)
 - X, Y each have 2 rows of 20 fibers spaced 1/3 fiber width apart for improved position resolution (three times better than with a single row)

Bellows allow detectors to move close to the beam while maintaining vacuum

Physics Using the Roman-Pot Detectors
- The Roman-pot detectors are used to study diffractive interactions
- Elastic scattering was measured by CDF in 1986-1989 using Roman pots (not those described here) in both the proton and antiproton direction

Path of the Antiproton through the Tevatron Magnets
- Dipole magnets bend recoil antiprotons which have lost momentum towards the inside of the Tevatron ring, into the Roman pots
- Knowledge of the beam optics, the collision vertex position, and the antiproton track position and angle in the Roman-pot detectors are used to reconstruct the kinematics of the diffractive antiproton

CDF had three Roman pots (RP1, RP2, RP3) located 57m downstream of the interaction point along the antiproton beam direction. They were used to detect antiprotons which underwent a “diffractive” interaction and were scattered in a direction very close to that of the original beam.